Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

Abstract

Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustrative representation and characterization of RNA/peptide coacervate systems.
Figure 2: Activity of LPP on the peptide and resulting phase separation.
Figure 3: Activity of PKA and dissolution of the coacervate phase.
Figure 4: Confocal microscopy of polyU/RRASLRRASL coacervates with fluorescent solutes.
Figure 5: Reversible coacervation modulated by changes in enzyme activity.

Similar content being viewed by others

References

  1. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  PubMed  Google Scholar 

  2. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    CAS  PubMed  Google Scholar 

  3. Brangwynne, C. P. Soft active aggregates: mechanics, dynamics and self-assembly of liquid-like intracellular protein bodies. Soft Matter 7, 3052–3059 (2011).

    CAS  Google Scholar 

  4. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zwicker, D., Decker, M., Jaensch, S., Hyman, A. A. & Jülicher, F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl Acad. Sci. USA 111, E2636–E2645 (2014).

    CAS  PubMed  Google Scholar 

  6. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  7. Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dundr, M. Nuclear bodies: multifunctional companions of the genome. Curr. Opin. Cell Biol. 24, 415–422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boisvert, F.-M., van Koningsbruggen, S., Navascués, J. & Lamond, A. I. The multifunctional nucleolus. Nature Rev. Mol. Cell Biol. 8, 574–585 (2007).

    CAS  Google Scholar 

  10. Hernandez-Verdun, D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2, 189–194 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Matera, A. G., Terns, R. M. & Terns, M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Rev. Mol. Cell Biol. 8, 209–220 (2007).

    CAS  Google Scholar 

  12. Hearst, S. M. et al. Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J. Cell Sci. 122, 1872–1881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Endicott, J. A., Noble, M. E. M. & Johnson, L. N. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81, 587–613 (2012).

    CAS  PubMed  Google Scholar 

  15. Ubersax, J. A. & Ferrell, J. E. Mechanisms of specificity in protein phosphorylation. Nature Rev. Mol. Cell Biol. 8, 530–541 (2007).

    CAS  Google Scholar 

  16. Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically-disordered proteins in C. elegans. eLife 3, e04591 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).

    CAS  Google Scholar 

  18. Scott, J. D., Dessauer, C. W. & Taskén, K. Creating order from chaos: cellular regulation by kinase anchoring. Annu. Rev. Pharmacol. Toxicol. 53, 187–210 (2013).

    CAS  PubMed  Google Scholar 

  19. Borg, M. et al. Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc. Natl Acad. Sci. USA 104, 9650–9655 (2007).

    CAS  PubMed  Google Scholar 

  20. Antonov, M., Mazzawi, M. & Dubin, P. L. Entering and exiting the protein–polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions. Biomacromolecules 11, 51–59 (2010).

    CAS  PubMed  Google Scholar 

  21. Priftis, D., Laugel, N. & Tirrell, M. Thermodynamic characterization of polypeptide complex coacervation. Langmuir 28, 15947–15957 (2012).

    CAS  PubMed  Google Scholar 

  22. Evreinova, T. N., Karnaukhov, W. N., Mamontova, T. W. & Ivanizki, G. R. The interaction of biological macromolecules in coacervate systems. J. Colloid Interface Sci. 36, 18–23 (1971).

    CAS  Google Scholar 

  23. Arfin, N. & Bohidar, H. B. Condensation, complex coacervation, and overcharging during DNA–gelatin interactions in aqueous solutions. J. Phys. Chem. B 116, 13192–13199 (2012).

    CAS  PubMed  Google Scholar 

  24. Keating, C. D. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc. Chem. Res. 45, 2114–2124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aumiller, W. M., Davis, B. W. & Keating, C. D. Phase separation as a possible means of nuclear compartmentalization. Int. Rev. Cell Mol. Biol. 307, 109–149 (2014).

    CAS  PubMed  Google Scholar 

  26. De Kruif, C. G., Weinbreck, F. & de Vries, R. Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 9, 340–349 (2004).

    CAS  Google Scholar 

  27. Wang, Q. & Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 47, 3108–3116 (2014).

    CAS  Google Scholar 

  28. Aumiller, W. M. et al. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system. J. Phys. Chem. B 118, 2506–2517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nature Chem. 4, 941–946 (2012).

    CAS  Google Scholar 

  30. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chem. 3, 720–724 (2011).

    CAS  Google Scholar 

  31. Black, K. A. et al. Protein encapsulation via polypeptide complex coacervation. ACS Macro Lett. 3, 1088–1091 (2014).

    CAS  Google Scholar 

  32. Tang, T.-Y. D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chem. 6, 527–533 (2014).

    Google Scholar 

  33. Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS  PubMed  Google Scholar 

  34. Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nature Chem. 7, 160–165 (2015).

    CAS  Google Scholar 

  35. Richards, E. G., Flessel, C. P. & Fresco, J. R. Polynucleotides. VI. Molecular properties and conformation of polyribouridylic acid. Biopolymers 1, 431–446 (1963).

    CAS  Google Scholar 

  36. Simpkins, H. & Richards, E. G. Spectrophotometric titration studies on poly(uridylic acid). Biopolymers 5, 551–560 (1967).

    CAS  Google Scholar 

  37. Kemp, B. E. Phosphorylation of acyl and dansyl derivatives of the peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly by the cAMP-dependent protein kinase. J. Biol. Chem. 255, 2914–2918 (1980).

    CAS  PubMed  Google Scholar 

  38. Kemp, B. E., Graves, D. J., Benjamini, E. & Krebs, E. G. Role of multiple basic residues in determining substrate specificity of cyclic AMP-dependent protein kinase. J. Biol. Chem. 252, 4888–4894 (1977).

    CAS  PubMed  Google Scholar 

  39. Priftis, D. & Tirrell, M. Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 8, 9396–9405 (2012).

    CAS  Google Scholar 

  40. Spruijt, E., Westphal, A. H., Borst, J. W., Stuart, M. A. C. & van der Gucht, J. Binodal compositions of polyeletrolyte complexes. Macromolecules 43, 6476–6484 (2010).

    CAS  Google Scholar 

  41. Zhuo, S., Clemens, J. C., Hakes, D. J., Barford, D. & Dixon, J. E. Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase. J. Biol. Chem. 268, 17754–17761 (1993).

    CAS  PubMed  Google Scholar 

  42. Mitić, N. et al. The catalytic mechanisms of binuclear metallohydrolases. Chem. Rev. 106, 3338–3363 (2006).

    PubMed  Google Scholar 

  43. Reiter, N. J., White, D. J. & Rusnak, F. Inhibition of bacteriophage lambda protein phosphatase by organic and oxoanion inhibitors. Biochemistry 41, 1051–1059 (2002).

    CAS  PubMed  Google Scholar 

  44. Adams, J. A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101, 2271–2290 (2001).

    CAS  PubMed  Google Scholar 

  45. Johnson, D. A., Akamine, P., Radzio-Andzelm, E., Madhusudan, M. & Taylor, S. S. Dynamics of cAMP-dependent protein kinase. Chem. Rev. 101, 2243–2270 (2001).

    CAS  PubMed  Google Scholar 

  46. Rosevear, P. R. et al. NMR studies of the backbone protons and secondary structure of pentapeptide and heptapeptide substrates bound to bovine heart protein kinase. Biochemistry 23, 3161–3173 (1984).

    CAS  PubMed  Google Scholar 

  47. Adams, J. A. & Taylor, S. S. Divalent metal ions influence catalysis and active-site accessibility in the cAMP-dependent protein kinase. Protein Sci. 2, 2177–2186 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Obenauer, J. C., Cantley, L. C. & Yaffe, M. B. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Harris, D. C. Quantitative Chemical Analysis 6th edn (W.H. Freeman & Co., 2003).

    Google Scholar 

  50. Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell 149, 1188–1191 (2012).

    CAS  PubMed  Google Scholar 

  51. Uversky, V. N., Kuznetsova, I. M., Turoverov, K. K. & Zaslavsky, B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett. 589, 15–22 (2015).

    CAS  PubMed  Google Scholar 

  52. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    CAS  PubMed  Google Scholar 

  53. Till, J. H., Annan, R. S., Carr, S. A. & Miller, W. T. Use of synthetic peptide libraries and phosphopeptide-selective mass spectrometry to probe protein kinase substrate specificity. J. Biol. Chem. 269, 7423–7428 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (grant no. MCB-1244180). The authors thank P. Bevilacqua for discussions about RNA, including suggesting polyU RNA. The authors also thank D. Kirby for assisting with image analysis.

Author information

Authors and Affiliations

Authors

Contributions

W.M.A. performed the experiments. W.M.A and C.D.K. conceived and designed the experiments, analysed the data and wrote the paper.

Corresponding author

Correspondence to Christine D. Keating.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2699 kb)

Supplementary information

Supplementary Movie 1 (MOV 530 kb)

Supplementary information

Supplementary Movie 2 (MOV 2363 kb)

Supplementary information

Supplementary Movie 3 (MOV 2437 kb)

Supplementary information

Supplementary Movie 4 (MOV 399 kb)

Supplementary information

Supplementary Movie 5 (MOV 2347 kb)

Supplementary information

Supplementary Movie 6 (MOV 971 kb)

Supplementary information

Supplementary Movie 7 (MOV 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aumiller, W., Keating, C. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nature Chem 8, 129–137 (2016). https://doi.org/10.1038/nchem.2414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2414

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing