Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Immune modulation by multifaceted cationic host defense (antimicrobial) peptides

Abstract

Cationic host defense (antimicrobial) peptides were originally studied for their direct antimicrobial activities. They have since been found to exhibit multifaceted immunomodulatory activities, including profound anti-infective and selective anti-inflammatory properties, as well as adjuvant and wound-healing activities in animal models. These biological properties suggest that host defense peptides, and synthetic derivatives thereof, possess clinical potential beyond the treatment of antibiotic-resistant infections. In this Review, we provide an overview of the biological activities of host defense and synthetic peptides, their mechanism(s) of action and new therapeutic applications and challenges that are associated with their clinical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the biological activities of HDPs and IDR peptides.
Figure 2: A simplified schematic of common mechanisms of action of HDPs and IDR peptides in monocytes and/or macrophages.

Similar content being viewed by others

References

  1. Fjell, C.D., Hiss, J.A., Hancock, R.E. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012).

    Article  CAS  Google Scholar 

  2. Afacan, N.J., Yeung, A.T., Pena, O.M. & Hancock, R.E. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr. Pharm. Des. 18, 807–819 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Mader, J.S. & Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs 15, 933–946 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Nijnik, A. & Hancock, R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg. Health Threats J. 2, e1 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hancock, R.E., Nijnik, A. & Philpott, D.J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10, 243–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lai, Y. & Gallo, R.L. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30, 131–141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Vandamme, D., Landuyt, B., Luyten, W. & Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell. Immunol. 280, 22–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Berkestedt, I., Nelson, A. & Bodelsson, M. Endogenous antimicrobial peptide LL-37 induces human vasodilation. Br. J. Anaesth. 100, 803–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Scott, M.G. et al. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol. 25, 465–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Ganz, T., Metcalf, J.A., Gallin, J.I., Boxer, L.A. & Lehrer, R.I. Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J. Clin. Invest. 82, 552–556 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pütsep, K., Carlsson, G., Boman, H.G. & Andersson, M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360, 1144–1149 (2002).

    Article  PubMed  Google Scholar 

  15. Wuerth, K.C., Hilchie, A.L., Brown, K.L. & Hancock, R.E.W. Host defence (antimicrobial) peptides and proteins. in Encyclopedia of Life Sciences, www.els.net (John Wiley & Sons, Ltd., 2013).

    Google Scholar 

  16. Nijnik, A. et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J. Immunol. 184, 2539–2550 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Welling, M.M. et al. Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J. Clin. Invest. 102, 1583–1590 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivas-Santiago, B. et al. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS ONE 8, e59119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Achtman, A.H. et al. Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. Sci. Transl. Med. 4, 135ra64 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Madera, L. & Hancock, R.E. Synthetic immunomodulatory peptide IDR-1002 enhances monocyte migration and adhesion on fibronectin. J. Innate Immun. 4, 553–568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niyonsaba, F. et al. The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. J. Leukoc. Biol. 94, 159–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Subramanian, H., Gupta, K., Guo, Q., Price, R. & Ali, H. Mas-related gene X2 (MrgX2) is a novel G protein–coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J. Biol. Chem. 286, 44739–44749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mookherjee, N. et al. Intracellular receptor for human host defense peptide LL-37 in monocytes. J. Immunol. 183, 2688–2696 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Girnita, A., Zheng, H., Gronberg, A., Girnita, L. & Stahle, M. Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor. Oncogene 31, 352–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. De Yang et al. LL-37, the neutrophil granule– and epithelial cell–derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Z. et al. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur. J. Immunol. 39, 3181–3194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niyonsaba, F. et al. Antimicrobial peptides human b-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 127, 594–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Röhrl, J., Yang, D., Oppenheim, J.J. & Hehlgans, T. Human b-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol. 184, 6688–6694 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, H.B. et al. Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide. J. Biol. Chem. 284, 36007–36011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mookherjee, N. et al. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol. Biosyst. 5, 483–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Pena, O.M. et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS ONE 8, e52449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mookherjee, N. et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol. 176, 2455–2464 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Davidson, D.J. et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell–induced T cell polarization. J. Immunol. 172, 1146–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, K.L. et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol. 186, 5497–5505 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. van der Does, A.M. et al. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J. Immunol. 185, 1442–1449 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Amatngalim, G.D., Nijnik, A., Hiemstra, P.S. & Hancock, R.E. Cathelicidin peptide LL-37 modulates TREM-1 expression and inflammatory responses to microbial compounds. Inflammation 34, 412–425 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Gardy, J.L., Lynn, D.J., Brinkman, F.S. & Hancock, R.E. Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol. 30, 249–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Brikos, C. & O'Neill, L.A. Signalling of toll-like receptors. Handb. Exp. Pharmacol. 21–50 (2008).

  39. Wieczorek, M. et al. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem. Biol. 17, 970–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Mayer, M.L. et al. Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells. J. Immunol. 190, 1227–1238 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Fukumoto, K. et al. Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr. Surg. Int. 21, 20–24 (2005).

    Article  PubMed  Google Scholar 

  42. Niyonsaba, F. et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106, 20–26 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kandler, K. et al. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int. Immunol. 18, 1729–1736 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Nijnik, A., Pistolic, J., Wyatt, A., Tam, S. & Hancock, R.E. Human cathelicidin peptide LL-37 modulates the effects of IFN-g on APCs. J. Immunol. 183, 5788–5798 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Alalwani, S.M. et al. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur. J. Immunol. 40, 1118–1126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinstraesser, L. et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS ONE 7, e39373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nicholls, E.F., Madera, L. & Hancock, R.E.W. Immunomodulators as adjuvants for vaccines and antimicrobial therapy. Ann. NY Acad. Sci. 1213, 46–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Guy, B. The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol. 5, 505–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Presicce, P., Giannelli, S., Taddeo, A., Villa, M.L. & Della Bella, S. Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J. Leukoc. Biol. 86, 941–948 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Biragyn, A. et al. Murine b-defensin 2 promotes TLR-4/MyD88-mediated and NF-kB–dependent atypical death of APCs via activation of TNFR2. J. Leukoc. Biol. 83, 998–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Wuerth, K. & Hancock, R.E. New insights into cathelicidin modulation of adaptive immunity. Eur. J. Immunol. 41, 2817–2819 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Grigat, J., Soruri, A., Forssmann, U., Riggert, J. & Zwirner, J. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human a-defensin family. J. Immunol. 179, 3958–3965 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Soruri, A., Grigat, J., Forssmann, U., Riggert, J. & Zwirner, J. β-defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved. Eur. J. Immunol. 37, 2474–2486 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Mader, J.S., Marcet-Palacios, M., Hancock, R.E.W. & Bleackley, R.C. The human cathelicidin, LL-37, induces granzyme-mediated apoptosis in cytotoxic T lymphocytes. Exp. Cell Res. 317, 531–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Hurtado, P. & Peh, C.A. LL-37 promotes rapid sensing of CpG oligodeoxynucleotides by B lymphocytes and plasmacytoid dendritic cells. J. Immunol. 184, 1425–1435 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Tewary, P. et al. β-defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-a production by human plasmacytoid dendritic cells, and promote inflammation. J. Immunol. 191, 865–874 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Garlapati, S. et al. Immunization with PCEP microparticles containing pertussis toxoid, CpG ODN and a synthetic innate defense regulator peptide induces protective immunity against pertussis. Vaccine 29, 6540–6548 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Garlapati, S. et al. Enhanced immune responses and protection by vaccination with respiratory syncytial virus fusion protein formulated with CpG oligodeoxynucleotide and innate defense regulator peptide in polyphosphazene microparticles. Vaccine 30, 5206–5214 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Polewicz, M. et al. Novel vaccine formulations against pertussis offer earlier onset of immunity and provide protection in the presence of maternal antibodies. Vaccine 31, 3148–3155 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Kindrachuk, J. et al. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine 27, 4662–4671 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Gracia, A. et al. Antibody responses in adult and neonatal BALB/c mice to immunization with novel Bordetella pertussis vaccine formulations. Vaccine 29, 1595–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Mills, K.H. Immunity to Bordetella pertussis. Microbes Infect. 3, 655–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Brown, T.H. et al. Comparison of immune responses and protective efficacy of intranasal prime-boost immunization regimens using adenovirus-based and CpG/HH2 adjuvanted-subunit vaccines against genital Chlamydia muridarum infection. Vaccine 30, 350–360 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Singer, A.J. & Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Edwards, R. & Harding, K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 17, 91–96 (2004).

    Article  PubMed  Google Scholar 

  66. Bowler, P.G. The 10(5) bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage. 49, 44–53 (2003).

    PubMed  Google Scholar 

  67. Sørensen, O.E. et al. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170, 5583–5589 (2003).

    Article  PubMed  Google Scholar 

  68. Steinstraesser, L. et al. Host defense peptides in wound healing. Mol. Med. 14, 528–537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramos, R. et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides 32, 1469–1476 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, P.H. et al. HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. Wound Repair Regen. 12, 351–358 (2004).

    Article  PubMed  Google Scholar 

  71. Geerlings, S.E. & Hoepelman, A.I. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol. Med. Microbiol. 26, 259–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Otte, J.M. et al. Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity. Regul. Pept. 156, 104–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Li, J. et al. PR39, a peptide regulator of angiogenesis. Nat. Med. 6, 49–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Tjabringa, G.S. et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J. Immunol. 171, 6690–6696 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Koczulla, R. et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 111, 1665–1672 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shaykhiev, R. et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L842–L848 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Pistolic, J. et al. Host defence peptide LL-37 induces IL-6 expression in human bronchial epithelial cells by activation of the NF-kB signaling pathway. J. Innate Immun. 1, 254–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, L. & Falla, T.J. Host defense peptides for use as potential therapeutics. Curr. Opin. Investig. Drugs 10, 164–171 (2009).

    CAS  PubMed  Google Scholar 

  79. Gibson, A.L. et al. Nonviral human b defensin-3 expression in a bioengineered human skin tissue: a therapeutic alternative for infected wounds. Wound Repair Regen. 20, 414–424 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fischer, P.M. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr. Protein Pept. Sci. 4, 339–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Barlow, P.G. et al. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J. Leukoc. Biol. 80, 509–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Schiemann, F. et al. The cathelicidin LL-37 activates human mast cells and is degraded by mast cell tryptase: counter-regulation by CXCL4. J. Immunol. 183, 2223–2231 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Peschel, A. & Sahl, H.G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4, 529–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Mattsby-Baltzer, I. et al. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr. Res. 40, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Mader, J.S., Smyth, D., Marshall, J. & Hoskin, D.W. Bovine lactoferricin inhibits basic fibroblast growth factor– and vascular endothelial growth factor165–induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am. J. Pathol. 169, 1753–1766 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bowdish, D.M. et al. Impact of LL-37 on anti-infective immunity. J. Leukoc. Biol. 77, 451–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Cirioni, O. et al. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob. Agents Chemother. 50, 1672–1679 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. An, L.L. et al. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6–1) DNA vaccine. Leuk. Res. 29, 535–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Tani, K. et al. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol. 12, 691–700 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge current funding from the Canadian Institutes for Health Research (CIHR) for our own work on these peptides. A.L.H. has a postdoctoral fellowship from CIHR, K.W. holds a Cystic Fibrosis Canada Studentship and R.E.W.H. holds a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E W Hancock.

Ethics declarations

Competing interests

R.E.W.H. is developing IDR and anti-biofilm peptides and has filed several patents in this area, all of which are assigned to his employer, the University of British Columbia. Two of his IDR peptides have been licensed to Elanco Animal Health Inc. for use in treatment of animals, one is being developed as a treatment for hyperinflammatory lung disease in patients with cystic fibrosis with the funding assistance of the Cystic Fibrosis Canada Translational Research program and one has been licensed to the Pan-provincial Vaccine Enterprise, PREVENT, for development as a component of vaccine adjuvant formulations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilchie, A., Wuerth, K. & Hancock, R. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9, 761–768 (2013). https://doi.org/10.1038/nchembio.1393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1393

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology