Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD

Abstract

G4 motifs are greatly enriched near promoters, suggesting that quadruplex structures may be targets of transcriptional regulation. Here we show, by ChIP-Seq analysis of human cells, that 40% of the binding sites of the transcription-associated helicases, XPB and XPD, overlap with G4 motifs. The highly significant overlap of XPB and XPD binding sites with G4 motifs cannot be explained by GC richness or parameters of the genomewide analysis, but instead suggests that these proteins are recruited to quadruplex structures that form in genomic DNA (G4 DNA). Biochemical analysis demonstrates that XPD is a robust G4 DNA helicase and that XPB binds G4 DNA. XPB and XPD are enriched near the transcription start site at 20% of genes, especially highly transcribed genes. XPB and XPD enrichment at G4 motifs characterizes specific signaling pathways and regulatory pathways associated with specific cancers. These results identify new candidate pathways for therapies targeted to quadruplexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XPD is a robust G4 DNA helicase.
Figure 2: XPB binds but does not unwind G4 DNA and binding is ATP sensitive.
Figure 3: Enrichment of XPB and XPD at TSS is correlated with transcription.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Gellert, M., Lipsett, M.N. & Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Maizels, N. & Gray, L.T. The G4 genome. PLoS Genet. 9, e1003468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eddy, J. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 34, 3887–3896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huppert, J.L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Du, Z., Zhao, Y. & Li, N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res. 37, 6784–6798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eddy, J. & Maizels, N. Selection for the G4 DNA motif at the 5′ end of human genes. Mol. Carcinog. 48, 319–325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Balasubramanian, S., Hurley, L.H. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Renaud de la Faverie, A. et al. Nucleic acids targeted to drugs: SELEX against a quadruplex ligand. Biochimie 93, 1357–1367 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. González, V. & Hurley, L.H. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry 49, 9706–9714 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Wei, D., Parkinson, G.N., Reszka, A.P. & Neidle, S. Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation. Nucleic Acids Res. 40, 4691–4700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tornaletti, S., Park-Snyder, S. & Hanawalt, P.C. G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 283, 12756–12762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belotserkovskii, B.P. et al. Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc. Natl. Acad. Sci. USA 107, 12816–12821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez, R. et al. Small molecule–induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oksenych, V. & Coin, F. The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9, 90–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Egly, J.-M. & Coin, F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst.) 10, 714–721 (2011).

    Article  CAS  Google Scholar 

  18. Fuss, J.O. & Tainer, J.A. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst.) 10, 697–713 (2011).

    Article  CAS  Google Scholar 

  19. Compe, E. & Egly, J.-M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 343–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. White, M.F. Structure, function and evolution of the XPD family of iron-sulfur-containing 5′→3′ DNA helicases. Biochem. Soc. Trans. 37, 547–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto, S. & Egly, J.-M. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum. Mol. Genet. 18, R224–R230 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Kamileri, I., Karakasilioti, I. & Garinis, G.A. Nucleotide excision repair: new tricks with old bricks. Trends Genet. 28, 566–573 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. London, T.B.C. et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J. Biol. Chem. 283, 36132–36139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, Y., Shin-ya, K. & Brosh, R.M. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol. 28, 4116–4128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sarkies, P., Reams, C., Simpson, L.J. & Sale, J.E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40, 1485–1498 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Uringa, E.-J., Youds, J.L., Lisaingo, K., Lansdorp, P.M. & Boulton, S.J. RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res. 39, 1647–1655 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, Y., Sommers, J.A., Khan, I., de Winter, J.P. & Brosh, R.M. Biochemical characterization of Warsaw breakage syndrome helicase. J. Biol. Chem. 287, 1007–1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Besnard, E. et al. Unraveling cell type–specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837–844 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Guédin, A., Gros, J., Alberti, P. & Mergny, J.L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 38, 7858–7868 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dubaele, S. et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11, 1635–1646 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, H. et al. Structure of the DNA repair helicase XPD. Cell 133, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudolf, J., Rouillon, C., Schwarz-Linek, U. & White, M.F. The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Res. 38, 931–941 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Tirode, F., Busso, D., Coin, F. & Egly, J.M. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell 3, 87–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Fan, L. et al. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol. Cell 22, 27–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, Y.C., Choi, W.S. & Gralla, J.D. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat. Struct. Mol. Biol. 12, 603–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Coin, F., Oksenych, V. & Egly, J.-M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26, 245–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Oksenych, V., de Jesus, B.B., Zhovmer, A., Egly, J.-M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 2971–2980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paeschke, K., Capra, J.A. & Zakian, V.A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lagerwerf, S., Vrouwe, M.G., Overmeer, R.M., Fousteri, M.I. & Mullenders, L.H.F. DNA damage response and transcription. DNA Repair (Amst.) 10, 743–750 (2011).

    Article  CAS  Google Scholar 

  44. Bauer, N.N., Chen, Y.-W., Samant, R.S., Shevde, L.A. & Fodstad, O. Rac1 activity regulates proliferation of aggressive metastatic melanoma. Exp. Cell Res. 313, 3832–3839 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Phan, A.T., Kuryavyi, V. & Patel, D.J. DNA architecture: from G to Z. Curr. Opin. Struct. Biol. 16, 288–298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lam, E.Y.N., Beraldi, D., Tannahill, D. & Balasubramanian, S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 4, 1796–1798 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Gray, L.T., Fong, K.K., Pavelitz, T. & Weiner, A.M. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans. PLoS Genet. 8, e1002972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kent, W.J., Zweig, A.S., Barber, G., Hinrichs, A.S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stajich, J.E. et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meyer, L.R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Shin, H., Liu, T., Manrai, A.K. & Liu, X.S. CEAS: cis-regulatory element annotation system. Bioinformatics 25, 2605–2606 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Huppert, J.L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Decorsière, A., Cayrel, A., Vagner, S. & Millevoi, S. Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3′-end processing and function during DNA damage. Genes Dev. 25, 220–225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rudolf, J., Makrantoni, V., Ingledew, W.J., Stark, M.J.R. & White, M.F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23, 801–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Sun, H., Karow, J.K., Hickson, I.D. & Maizels, N. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this manuscript was supported by US National Institutes of Health–National Cancer Institute grant P01 CA077852. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank our Program Project colleagues for active discussions, M. White (St. Andrews University, Scotland) for the XPD expression construct; J. Tainer (Scripps Research Institute) for the XPB expression construct; A. Bailey for help with sequencing library preparation and C. Lee and J. Shendure for sequencing of ChIP-Seq libraries on an Illumina Hi-Seq 2000 (University of Washington).

Author information

Authors and Affiliations

Authors

Contributions

L.T.G. performed ChIP-Seq and expression array experiments and analyzed those results. A.C.V. and J.E. performed biochemical studies of XPB and XPD. L.T.G., A.C.V., J.E. and N.M. conceived the study and designed experiments. L.T.G., A.C.V., J.E. and N.M. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Nancy Maizels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–4 and Supplementary Tables 1–3. (PDF 5952 kb)

Supplementary Data Set 1

Gene expression data for HT1080 cell lines. (XLSX 766 kb)

Supplementary Data Set 2

Genes with enrichment of XPB or XPD within 1 kb of TSS. (XLSX 264 kb)

Supplementary Data Set 3

Selected online GREAT results for XPB and XPD peaks containing motifs (XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, L., Vallur, A., Eddy, J. et al. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat Chem Biol 10, 313–318 (2014). https://doi.org/10.1038/nchembio.1475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing