Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An allosteric switch for pro-HGF/Met signaling using zymogen activator peptides

Abstract

Stimulation of hepatocyte growth factor (HGF) signaling through the Met receptor is an attractive approach for promoting tissue repair and preventing fibrosis. Using structure-guided peptide phage display combined with an activity-based sorting strategy, we engineered allosteric activators of zymogen-like pro-HGF to bypass proteolytic activation and reversibly stimulate pro-HGF signaling through Met. Biochemical, structural and biological data showed that zymogen activator peptides (ZAPtides) potently and selectively bind the activation pocket within the serine protease–like β-chain of pro-HGF and display titratable activation of pro-HGF–dependent Met signaling, leading to cell survival and migration. To further demonstrate the versatility of our ZAPtide platform, we identified allosteric activators for pro–macrophage stimulating protein and a zymogen serine protease, Protein C, which also provides evidence for target selectivity. These studies reveal that ZAPtides use molecular mimicry of the trypsin-like N-terminal insertion mechanism and establish a new paradigm for selective pharmacological activation of plasminogen-related growth factors and zymogen serine proteases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using the ZAPtide phage library to target the HGF β activation pocket.
Figure 2: Optimizing ZAP.14 using activity-based phage sorting.
Figure 3: ZAP2.3 is a high-affinity cyclic peptide activator of zHGF β.
Figure 4: ZAP2.3 retains the ZAP.14 structure within the disulfide-locked scaffold.
Figure 5: ZAPtides allosterically activate scHGF and control cell survival and migration.
Figure 6: ZAPtides activate the serine protease–like domain of pro-MSP and the zymogen protease Protein C.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Nakamura, T. et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440–443 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Stoker, M., Gherardi, E., Perryman, M. & Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327, 239–242 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Crestani, B. et al. Hepatocyte growth factor and lung fibrosis. Proc. Am. Thorac. Soc. 9, 158–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura, T., Sakai, K., Nakamura, T. & Matsumoto, K. Hepatocyte growth factor twenty years on: much more than a growth factor. J. Gastroenterol. Hepatol. 26 (suppl. 1), 188–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Jones, D.S. II, Tsai, P.C. & Cochran, J.R. Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proc. Natl. Acad. Sci. USA 108, 13035–13040 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tolbert, W.D., Daugherty-Holtrop, J., Gherardi, E., Vande Woude, G. & Xu, H.E. Structural basis for agonism and antagonism of hepatocyte growth factor. Proc. Natl. Acad. Sci. USA 107, 13264–13269 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chakraborty, S., Chopra, P., Hak, A., Dastidar, S.G. & Ray, A. Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert Opin. Investig. Drugs 22, 499–515 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Ueki, T. et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat. Med. 5, 226–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bevan, D., Gherardi, E., Fan, T.P., Edwards, D. & Warn, R. Diverse and potent activities of HGF/SF in skin wound repair. J. Pathol. 203, 831–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura, T. et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 106, 1511–1519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bottaro, D.P. et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251, 802–804 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Comoglio, P.M., Giordano, S. & Trusolino, L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat. Rev. Drug Discov. 7, 504–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Gherardi, E., Birchmeier, W., Birchmeier, C. & Vande Woude, G. Targeting MET in cancer: rationale and progress. Nat. Rev. Cancer 12, 89–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Hartmann, G. et al. Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr. Biol. 8, 125–134 (1998); erratum 8, R739 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lyon, M., Deakin, J.A., Mizuno, K., Nakamura, T. & Gallagher, J.T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 269, 11216–11223 (1994).

    CAS  PubMed  Google Scholar 

  16. Donate, L.E. et al. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci. 3, 2378–2394 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lokker, N.A. et al. Structure-function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J. 11, 2503–2510 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kirchhofer, D. et al. Structural and functional basis of the serine protease–like hepatocyte growth factor β-chain in Met binding and signaling. J. Biol. Chem. 279, 39915–39924 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Bode, W. & Huber, R. Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett. 68, 231–236 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Huber, R. & Bode, W. Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–122 (1978).

    Article  CAS  Google Scholar 

  21. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Khan, A.R. & James, M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 7, 815–836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyazawa, K. Hepatocyte growth factor activator (HGFA): a serine protease that links tissue injury to activation of hepatocyte growth factor. FEBS J. 277, 2208–2214 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Kataoka, H. & Kawaguchi, M. Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J. 277, 2230–2237 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Naka, D. et al. Activation of hepatocyte growth factor by proteolytic conversion of a single chain form to a heterodimer. J. Biol. Chem. 267, 20114–20119 (1992).

    CAS  PubMed  Google Scholar 

  26. Lokker, N.A., Presta, L.G. & Godowski, P.J. Mutational analysis and molecular modeling of the N-terminal kringle-containing domain of hepatocyte growth factor identifies amino acid side chains important for interaction with the c-Met receptor. Protein Eng. 7, 895–903 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kirchhofer, D. et al. Utilizing the activation mechanism of serine proteases to engineer hepatocyte growth factor into a Met antagonist. Proc. Natl. Acad. Sci. USA 104, 5306–5311 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peek, M., Moran, P., Mendoza, N., Wickramasinghe, D. & Kirchhofer, D. Unusual proteolytic activation of pro-hepatocyte growth factor by plasma kallikrein and coagulation factor XIa. J. Biol. Chem. 277, 47804–47809 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S.L., Dickson, R.B. & Lin, C.Y. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J. Biol. Chem. 275, 36720–36725 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Kirchhofer, D. et al. Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett. 579, 1945–1950 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Stamos, J., Lazarus, R.A., Yao, X., Kirchhofer, D. & Wiesmann, C. Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. EMBO J. 23, 2325–2335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaibori, M. et al. Impairment of activation of hepatocyte growth factor precursor into its mature form in rats with liver cirrhosis. J. Surg. Res. 106, 108–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Phin, S. et al. Imbalance in the pro-hepatocyte growth factor activation system in bleomycin-induced lung fibrosis in mice. Am. J. Respir. Cell Mol. Biol. 42, 286–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Marchand-Adam, S. et al. Defect of pro-hepatocyte growth factor activation by fibroblasts in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 174, 58–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Landgraf, K.E. et al. Allosteric peptide activators of pro-hepatocyte growth factor stimulate Met signaling. J. Biol. Chem. 285, 40362–40372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bøtkjær, K.A. et al. Nonproteolytic induction of catalytic activity into the single-chain form of urokinase-type plasminogen activator by dipeptides. Biochemistry 48, 9606–9617 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hedstrom, L., Lin, T.Y. & Fast, W. Hydrophobic interactions control zymogen activation in the trypsin family of serine proteases. Biochemistry 35, 4515–4523 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, J., Sidhu, S.S. & Wells, J.A. Two-state selection of conformation-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 3071–3076 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rizk, S.S. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat. Struct. Mol. Biol. 18, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martens, T. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144–6152 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Benight, N.M. & Waltz, S.E. Ron receptor tyrosine kinase signaling as a therapeutic target. Expert Opin. Ther. Targets 16, 921–931 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao, H.P., Zhou, Y.Q., Zhang, R. & Wang, M.H. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat. Rev. Cancer 13, 466–481 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Gohara, D.W. & Di Cera, E. Allostery in trypsin-like proteases suggests new therapeutic strategies. Trends Biotechnol. 29, 577–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huntington, J.A. Thrombin plasticity. Biochim. Biophys. Acta 1824, 246–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Pozzi, N., Barranco-Medina, S., Chen, Z. & Di Cera, E. Exposure of R169 controls protein C activation and autoactivation. Blood 120, 664–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pozzi, N. et al. Autoactivation of thrombin precursors. J. Biol. Chem. 288, 11601–11610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vogt, A.D. & Di Cera, E. Conformational selection is a dominant mechanism of ligand binding. Biochemistry 52, 5723–5729 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Friedrich, R. et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425, 535–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Gough, J., Karplus, K., Hughey, R. & Chothia, C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313, 903–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tonikian, R., Zhang, Y., Boone, C. & Sidhu, S.S. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat. Protoc. 2, 1368–1386 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  53. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  59. Bricogne, G. et al. BUSTER version 2.11.2. (Global Phasing Ltd., Cambridge, United Kingdom, 2011).

  60. The PyMOL Molecular Graphics System, Version 1.4.1, Schrödinger, LLC.

Download references

Acknowledgements

We thank gCell, Oligonucleotide Synthesis, DNA Sequencing and the Protein Expression facilities at Genentech for their support. We thank T. Lipari and D. Kirchhofer for providing full-length HGF proteins and helpful discussions. We also thank M. Sagolla and the Center for Advanced Light Microscopy at Genentech for help with migration assays. We acknowledge the use of synchrotron X-ray sources at Advanced Photon Source, Argonne National Laboratory and Stanford Synchrotron Radiation Lightsource, supported by the Department of Energy Office of Science.

Author information

Authors and Affiliations

Authors

Contributions

K.E.L. designed the research, performed the experiments, analyzed data and wrote the paper. M.S. and C.Y. performed the crystallography. C.Q. and J.T. carried out peptide synthesis, purification and characterization. H.R.M. and L.S. generated key HGF, Met, MSP or RON protein reagents. C.E. determined the crystal structures. R.A.L. guided the research, analyzed data and wrote the paper.

Corresponding authors

Correspondence to Kyle E Landgraf or Robert A Lazarus.

Ethics declarations

Competing interests

All authors are, or were while the research was conducted, employees of Genentech, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14 and Supplementary Tables 1–5. (PDF 3516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landgraf, K., Steffek, M., Quan, C. et al. An allosteric switch for pro-HGF/Met signaling using zymogen activator peptides. Nat Chem Biol 10, 567–573 (2014). https://doi.org/10.1038/nchembio.1533

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing