Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Networking by small-molecule hormones in plant immunity

Abstract

Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provided exciting new insights into the underlying defense signaling network. Diverse small-molecule hormones play pivotal roles in the regulation of this network. Their signaling pathways cross-communicate in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Pathogens, on the other hand, can manipulate the plant's defense signaling network for their own benefit by affecting phytohormone homeostasis to antagonize the host immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Disease symptoms on Arabidopsis leaves caused by the necrotrophic fungus Botrytis cinerea, the biotrophic oomycete Hyaloperonospora arabidopsidis and the hemibiotrophic bacterium Pseudomonas syringae.
Figure 3: Simplified schematic representation of the plant immune system.
Figure 4: Schematic representation of systemically induced immune responses.
Figure 5: Simplified schematic representation of the SA, JA and ET signaling pathways.
Figure 6: Networking by phytohormones in the plant immune response.

Similar content being viewed by others

References

  1. Buchanan, B.B., Gruissem, W. & Jones, R.L. Biochemistry & Molecular Biology of Plants 1367 (American Society of Plant Physiologists, Rockville, Maryland, USA, 2000).

    Google Scholar 

  2. Pozo, M.J., Van Loon, L.C. & Pieterse, C.M.J. Jasmonates—signals in plant-microbe interactions. J. Plant Growth Regul. 23, 211–222 (2004).

    CAS  Google Scholar 

  3. Van Loon, L.C., Geraats, B.P.J. & Linthorst, H.J.M. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11, 184–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Loake, G. & Grant, M. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol. 10, 466–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Howe, G.A. Jasmonates as signals in the wound response. J. Plant Growth Regul. 23, 223–237 (2004).

    Article  CAS  Google Scholar 

  6. Von Dahl, C.C. & Baldwin, I.T. Deciphering the role of ethylene in plant-herbivore interactions. J. Plant Growth Regul. 26, 201–209 (2007).

    Article  CAS  Google Scholar 

  7. Asselbergh, B., De Vleesschauwer, D. & Höfte, M. Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21, 709–719 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Mauch-Mani, B. & Mauch, F. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8, 409–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, D., Pajerowska-Mukhtar, K., Hendrickson Culler, A. & Dong, X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17, 1784–1790 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18, 650–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Walters, D.R. & McRoberts, N. Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci. 11, 581–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Siemens, J. et al. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant Microbe Interact. 19, 480–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Nakashita, H. et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33, 887–898 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Shan, L.B. et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walters, D. & Heil, M. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71, 3–17 (2007).

    Article  CAS  Google Scholar 

  17. De Vos, M. et al. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant Microbe Interact. 18, 923–937 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, J.D.G. & Dangl, J.L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Göhre, V. & Robatzek, S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46, 189–215 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Nürnberger, T. & Kemmerling, B. Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. Annu. Plant Rev. 34, 16–47 (2009).

    Google Scholar 

  22. Chisholm, S.T., Coaker, G., Day, B. & Staskawicz, B.J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Schwessinger, B. & Zipfel, C. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11, 389–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Tsuda, K., Sato, M., Glazebrook, J., Cohen, J.D. & Katagiri, F. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J. 53, 763–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. De Wit, P.J.G.M. Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci. 2, 452–458 (1997).

    Article  Google Scholar 

  26. Thomma, B.P.H.J., Penninckx, I.A.M.A., Broekaert, W.F. & Cammue, B.P.A. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13, 63–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Durrant, W.E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Van Loon, L.C., Rep, M. & Pieterse, C.M.J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mishina, T.E. & Zeier, J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 50, 500–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Dong, X. NPR1, all things considered. Curr. Opin. Plant Biol. 7, 547–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Vlot, A.C., Klessig, D.F. & Park, S.-W. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11, 436–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Van Loon, L.C., Bakker, P.A.H.M. & Pieterse, C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Pozo, M.J. & Azcon-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Van Wees, S.C.M., Van der Ent, S. & Pieterse, C.M.J. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Bakker, P.A.H.M., Pieterse, C.M.J. & Van Loon, L.C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97, 239–243 (2007).

    Article  PubMed  Google Scholar 

  36. Van der Ent, S. et al. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 146, 1293–1304 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Pozo, M.J., Van der Ent, S., Van Loon, L.C. & Pieterse, C.M.J. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180, 511–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ton, J., Van Pelt, J.A., Van Loon, L.C. & Pieterse, C.M.J. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15, 27–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Van Oosten, V.R. et al. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol. Plant Microbe Interact. 21, 919–930 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Stout, M.J., Thaler, J.S. & Thomma, B.P.H.J. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51, 663–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Poelman, E.H., van Loon, J.J.A. & Dicke, M. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci. 13, 534–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Van der Putten, W.H., Vet, L.E.M., Harvey, J.A. & Wäckers, F.L. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 16, 547–554 (2001).

    Article  Google Scholar 

  44. Reymond, P. & Farmer, E.E. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Pieterse, C.M.J. & Dicke, M. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci. 12, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kunkel, B.N. & Brooks, D.M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Bostock, R.M. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545–580 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kendrick, M.D. & Chang, C. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 11, 479–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Katsir, L., Chung, H.S., Koo, A.J.K. & Howe, G.A. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11, 428–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doherty, H.M., Selvendran, R.R. & Bowles, D.J. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol. Mol. Plant Pathol. 33, 377–384 (1988).

    Article  CAS  Google Scholar 

  51. Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Métraux, J.-P. & Broekaert, W.F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Katagiri, F. A global view of defense gene expression regulation—a highly interconnected signaling network. Curr. Opin. Plant Biol. 7, 506–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Glazebrook, J. et al. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34, 217–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147, 1358–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spoel, S.H., Johnson, J.S. & Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104, 18842–18847 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spoel, S.H. et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760–770 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schenk, P.M. et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97, 11655–11660 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. & Wasternack, C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140, 249–262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Van Wees, S.C.M., De Swart, E.A.M., Van Pelt, J.A., Van Loon, L.C. & Pieterse, C.M.J. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 8711–8716 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koornneef, A. & Pieterse, C.M.J. Cross-talk in defense signaling. Plant Physiol. 146, 839–844 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spoel, S.H. & Dong, X. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3, 348–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Kazan, K. & Manners, J.M. Jasmonate signaling: toward an integrated view. Plant Physiol. 146, 1459–1468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lorenzo, O. & Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol. 8, 532–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. López, M.A., Bannenberg, G. & Castresana, C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr. Opin. Plant Biol. 11, 420–427 (2008).

    Article  PubMed  CAS  Google Scholar 

  65. Robert-Seilaniantz, A., Navarro, L., Bari, R. & Jones, J.D.G. Pathological hormone imbalances. Curr. Opin. Plant Biol. 10, 372–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Petersen, M. et al. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Brodersen, P. et al. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 47, 532–546 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Kachroo, P., Shanklin, J., Shah, J., Whittle, E.J. & Klessig, D.F. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA 98, 9448–9453 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ndamukong, I. et al. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50, 128–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J., Brader, G. & Palva, E.T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16, 319–331 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kachroo, P., Kachroo, A., Lapchyk, L., Hildebrand, D. & Klessig, D.F. Restoration of defective cross talk in ssi2 mutants: Role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. Mol. Plant Microbe Interact. 16, 1022–1029 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Mou, Z., Fan, W.H. & Dong, X.N. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Pieterse, C.M.J. & Van Loon, L.C. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7, 456–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Yuan, Y. et al. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5, 313–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Leon-Reyes, A. et al. Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol. 149, 1797–1809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johansson, A., Staal, J. & Dixelius, C. Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol. Plant Microbe Interact. 19, 958–969 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Pré, M. et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 147, 1347–1357 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J. & Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165–178 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anderson, J.P. et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16, 3460–3479 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nickstadt, A. et al. The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol. Plant Pathol. 5, 425–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Truman, W., Bennett, M.H., Kubigsteltig, I., Turnbull, C. & Grant, M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc. Natl. Acad. Sci. USA 104, 1075–1080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laurie-Berry, N., Joardar, V., Street, I.H. & Kunkel, B.N. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant Microbe Interact. 19, 789–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Verberne, M.C., Hoekstra, J., Bol, J.F. & Linthorst, H.J.M. Signaling of systemic acquired resistance in tobacco depends on ethylene perception. Plant J. 35, 27–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lawton, K.A., Potter, S.L., Uknes, S. & Ryals, J. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6, 581–588 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. De Vos, M. et al. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 142, 352–363 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Adie, B.A.T. et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19, 1665–1681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Flors, V. et al. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54, 81–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Yasuda, M. et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20, 1678–1692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mohr, P.G. & Cahill, D.M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics 7, 181–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Nagpal, P. et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132, 4107–4118 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, J. & Wang, X.-J. An integrative analysis of the effects of auxin on jasmonic acid biosynthesis in Arabidopsis thaliana. J. Integr. Plant Biol. 48, 99–103 (2006).

    Article  CAS  Google Scholar 

  93. Chen, Z.Y. et al. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl. Acad. Sci. USA 104, 20131–20136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Belkhadir, Y. & Chory, J. Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314, 1410–1411 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Heese, A. et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217–12222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kemmerling, B. et al. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr. Biol. 17, 1116–1122 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Tzfira, T. & Citovsky, V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr. Opin. Biotechnol. 17, 147–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Cristescu, S.M., De Martinis, D., Hekkert, S.T., Parker, D.H. & Harren, F.J.M. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Appl. Environ. Microbiol. 68, 5342–5350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Nomura, K., Melotto, M. & He, S.-Y. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr. Opin. Plant Biol. 8, 361–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. de Torres-Zabala, M. et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26, 1434–1443 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jelenska, J. et al. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol. 17, 499–508 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brooks, D.M., Bender, C.L. & Kunkel, B.N. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6, 629–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Uppalapati, S.R. et al. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 20, 955–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Traw, M.B., Kim, J., Enright, S., Cipollini, D.F. & Bergelson, J. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol. Ecol. 12, 1125–1135 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Scheres, B. & Lipka, V. Plant cell biology—get your networks together. Curr. Opin. Plant Biol. 10, 546–548 (2007).

    Article  PubMed  Google Scholar 

  108. Long, T.A., Rady, S.M. & Benfey, P.N. Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors of this review are supported by VICI grant no. 865.04.002 of the Earth and Life Sciences Foundation, which is subsidized by the Netherlands Organization of Scientific Research (NWO); the Centre for BioSystems Genomics (CBSG), which is part of the Netherlands Genomics Initiative of the NWO; and project T3-103 of the Top Institute Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corné M J Pieterse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieterse, C., Leon-Reyes, A., Van der Ent, S. et al. Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308–316 (2009). https://doi.org/10.1038/nchembio.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing