Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting

Abstract

There is increasing evidence that uncultivated bacterial symbionts are the true producers of numerous bioactive compounds isolated from marine sponges. The localization and heterologous expression of biosynthetic genes could clarify this issue and provide sustainable supplies for a wide range of pharmaceuticals. However, identification of genes in the usually highly complex symbiont communities remains a challenging task. For polyketides, one of the most important groups of sponge-derived drug candidates, we have developed a general strategy that allows one to rapidly access biosynthetic gene clusters based on chemical moieties. Using this method, we targeted polyketide synthase genes from two different sponge metagenomes. We have obtained from a sponge-bacterial association a complete pathway for the rare and potent antitumor agent psymberin from Psammocinia aff. bulbosa. The data support the symbiont hypothesis and provide insights into natural product evolution in previously inaccessible bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some sponge-derived complex polyketides that have been shown or proposed to be synthesized by symbionts.
Figure 2: Alignment of KS protein sequences.
Figure 3: Agarose gel analysis of PCR products obtained from positive and negative sponge chemotypes using primers specific for KS amplicons.
Figure 4: The psy genes and model for psymberin biosynthesis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Blunt, J.W. et al. Marine natural products. Nat. Prod. Rep. 25, 35–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Newman, D.J. & Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216–1238 (2004).

    CAS  PubMed  Google Scholar 

  3. Sipkema, D., Franssen, M.C.R., Osinga, R., Tramper, J. & Wijffels, R.H. Marine sponges as pharmacy. Mar. Biotechnol. 7, 142–162 (2005).

    Article  CAS  Google Scholar 

  4. Schmidt, E.W. From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria associations. Trends Biotechnol. 23, 437–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21, 519–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. König, G.M., Kehraus, S., Seibert, S.F., Abdel-Lateff, A. & Müller, D. Natural products from marine organisms and their associated microbes. ChemBioChem 7, 229–238 (2006).

    Article  PubMed  Google Scholar 

  7. Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101, 16222–16227 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bewley, C.A. & Faulkner, D.J. Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37, 2163–2178 (1998).

    Article  CAS  Google Scholar 

  9. Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 70, 67–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Partida-Martinez, L.P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99, 14002–14007 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor, M.W., Hill, R.T., Piel, J., Thacker, R.W. & Hentschel, U. Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J. 1, 187–190 (2007).

    Article  PubMed  Google Scholar 

  13. Taylor, M.W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piel, J., Hui, D., Fusetani, N. & Matsunaga, S. Targeting polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ. Microbiol. 6, 921–927 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, T.K. & Fuerst, J.A. Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environ. Microbiol. 8, 1460–1470 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Fieseler, L. et al. Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl. Environ. Microbiol. 73, 2144–2155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cichewicz, R.H., Valeriote, F.A. & Crews, P. Psymberin, a potent sponge-derived cytotoxin from Psammocinia distantly related to the pederin family. Org. Lett. 6, 1951–1954 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Pettit, G.R. et al. Antineoplastic agents. 520. Isolation and structure of irciniastatins A and B from the Indo-Pacific marine sponge Ircinia ramosa. J. Med. Chem. 47, 1149–1152 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Partida-Martinez, L.P. & Hertweck, C. A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. ChemBioChem 8, 41–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, Y.Q., Tang, G.L. & Shen, B. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc. Natl. Acad. Sci. USA 100, 3149–3154 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu, L.C. et al. Metabolic coupling of dehydration and decarboxylation in the curacin A pathway: functional identification of a mechanistically diverse enzyme pair. J. Am. Chem. Soc. 128, 9014–9015 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Edwards, D.J. et al. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 11, 817–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, T.A. et al. Sponge-derived fijianolide polyketide class: further evaluation of their structural and cytotoxicity properties. J. Med. Chem. 50, 3795–3803 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khosla, C., Tang, Y., Chen, A.Y., Schnarr, N.A. & Cane, D.E. Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu. Rev. Biochem. 76, 195–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Robinson, S.J. et al. Probing the bioactive constituents from chemotypes of the sponge Psammocinia aff. bulbosa. J. Nat. Prod. 70, 1002–1009 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Perry, N.B., Blunt, J.W., Munro, M.H.G. & Pannell, L.K. Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J. Am. Chem. Soc. 110, 4850–4851 (1988).

    Article  CAS  Google Scholar 

  29. West, L.M., Northcote, P.T., Battershill, C.N. & Peloruside, A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J. Org. Chem. 65, 445–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Northcote, P.T., Blunt, J.W. & Munro, M.H.G. Pateamine - a potent cytotoxin from the New Zealand marine sponge, Mycale sp. Tetrahedron Lett. 32, 6411–6414 (1991).

    Article  CAS  Google Scholar 

  31. Menche, D. et al. Stereochemical determination and complex biosynthetic assembly of etnangien, a highly potent RNA polymerase inhibitor from the myxobacterium Sorangium cellulosum. J. Am. Chem. Soc. 130, 14234–14243 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Gu, L.C. et al. GNAT-like strategy for polyketide chain initiation. Science 318, 970–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hrvatin, S. & Piel, J. Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools. J. Microbiol. Methods 68, 434–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Piel, J., Höfer, I. & Hui, D. Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J. Bacteriol. 186, 1280–1286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wenzel, S.C. & Müller, R. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry. Nat. Prod. Rep. 24, 1211–1224 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, X., Williams, N. & De Brabander, J.K. Synthesis of psymberin analogues: probing a functional correlation with the pederin/mycalamide family of natural products. Org. Lett. 9, 227–230 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Paul, G.K., Gunasekera, S.P., Longley, R.E. & Pomponi, S.A. Theopederins K and L. Highly potent cytotoxic metabolites from a marine sponge Discodermia species. J. Nat. Prod. 65, 59–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Ottesen, E.A., Hong, J.W., Quake, S.R. & Leadbetter, J.R. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Flatt, P. et al. Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar. Biol. 147, 761–774 (2005).

    Article  CAS  Google Scholar 

  42. Esquenazi, E. et al. Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol. Biosyst. 4, 562–570 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simmons, T.L. et al. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. USA 105, 4587–4594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  45. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  47. Piel, J., Wen, G., Platzer, M. & Hui, D. Unprecedented diversity of catalytic domains in the first four modules of the putative pederin polyketide synthase. ChemBioChem 5, 93–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Calderone, C.T., Kowtoniuk, W.E., Kelleher, N.L., Walsh, C.T. & Dorrestein, P.C. Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 103, 8977–8982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Page for assistance with collecting M. hentscheli of known chemotypes and S. Brady for advice on metagenomic library construction. This work was supported by a collaborative grant from the US National Science Foundation and the German Research Foundation to J.P. (PI 430/6-1) and P.C. (NSF-CHE-0617056), by grants from the German Research Foundation to J.P. (SFB 624 and SPP 1152) and by an Alexander von Humboldt Research Fellowship to S.A.v.d.S.

Author information

Authors and Affiliations

Authors

Contributions

J.P. designed the research on PKS targeting and isolation, analyzed data and wrote the manuscript; K.M.F. developed the targeting approach; K.M.F. and C.G. constructed libraries and isolated and analyzed the psy genes; N.H. isolated and analyzed the psy genes; S.A.v.d.S. conducted the PKS work on M. hentscheli; S.T. and M.P. sequenced and analyzed PCR amplicons; P.C., B.K.R. and S.J.R. collected and analyzed specimens of P. aff. bulbosa and C. mycofijiensis; V.L.W. designed research to collect and aquaculture the different chemotypes of M. hentscheli; S.A.A. performed the initial analysis of the microbe population in M. hentscheli chemotypes and selected M. hentscheli for the metagenomic work.

Corresponding author

Correspondence to Jörn Piel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Table 1 and Supplementary Methods (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisch, K., Gurgui, C., Heycke, N. et al. Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat Chem Biol 5, 494–501 (2009). https://doi.org/10.1038/nchembio.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing