Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria

Abstract

Tyrosine phosphorylation is a common protein post-translational modification that plays a critical role in signal transduction and the regulation of many cellular processes. Using a propeptide strategy to increase cellular uptake of O-phosphotyrosine (pTyr) and its nonhydrolyzable analog 4-phosphomethyl-L-phenylalanine (Pmp), we identified an orthogonal aminoacyl-tRNA synthetase–tRNA pair that allows site-specific incorporation of both pTyr and Pmp into recombinant proteins in response to the amber stop codon in Escherichia coli in good yields. The X-ray structure of the synthetase reveals a reconfigured substrate-binding site, formed by nonconservative mutations and substantial local structural perturbations. We demonstrate the utility of this method by introducing Pmp into a putative phosphorylation site and determining the affinities of the individual variants for the substrate 3BP2. In summary, this work provides a useful recombinant tool to dissect the biological functions of tyrosine phosphorylation at specific sites in the proteome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Propeptide strategy to increase the intracellular concentrations of pTyr and Pmp.
Figure 2: Incorporation and characterization of variant myoglobins containing different ncAAs.
Figure 3: Expression and characterization of human Abl1 and its Pmp-containing variants in E. coli.
Figure 4: X-ray structure of CMFRS.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Hunter, T. & Cooper, J.A. Protein-tyrosine kinases. Annu. Rev. Biochem. 54, 897–930 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Eckhart, W., Hutchinson, M.A. & Hunter, T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18, 925–933 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Tailor, P., Gilman, J., Williams, S., Couture, C. & Mustelin, T. Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132. J. Biol. Chem. 272, 5371–5374 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Feng, G.S., Hui, C.C. & Pawson, T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 259, 1607–1611 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Tarrant, M.K. et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat. Chem. Biol. 8, 262–269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, Z. & Cole, P.A. Synthetic approaches to protein phosphorylation. Curr. Opin. Chem. Biol. 28, 115–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Serwa, R. et al. Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. Angew. Chem. Int. Ed. Engl. 48, 8234–8239 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Arslan, T., Mamaev, S.V., Mamaeva, N.V. & Hecht, S.M. Structurally modified firefly luciferase. Effects of amino acid substitution at position 286. J. Am. Chem. Soc. 119, 10877–10887 (1997).

    Article  CAS  Google Scholar 

  13. Liu, C.C. & Schultz, P.G. Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat. Biotechnol. 24, 1436–1440 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, C.C. et al. Protein evolution with an expanded genetic code. Proc. Natl. Acad. Sci. USA 105, 17688–17693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, C.C., Choe, H., Farzan, M., Smider, V.V. & Schultz, P.G. Mutagenesis and evolution of sulfated antibodies using an expanded genetic code. Biochemistry 48, 8891–8898 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, C.C., Cellitti, S.E., Geierstanger, B.H. & Schultz, P.G. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code. Nat. Protoc. 4, 1784–1789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, C.C., Brustad, E., Liu, W. & Schultz, P.G. Crystal structure of a biosynthetic sulfo-hirudin complexed to thrombin. J. Am. Chem. Soc. 129, 10648–10649 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie, J., Supekova, L. & Schultz, P.G. A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. ACS Chem. Biol. 2, 474–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rust, H.L. et al. Using unnatural amino acid mutagenesis to probe the regulation of PRMT1. ACS Chem. Biol. 9, 649–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerra-Castellano, A. et al. Mimicking tyrosine phosphorylation in human cytochrome c by the evolved tRNA synthetase technique. Chemistry 21, 15004–15012 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, Y., Lv, X. & Wang, J. A genetically encoded sulfotyrosine for VHR function research. Protein Cell 4, 731–734 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lu, W., Shen, K. & Cole, P.A. Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry 42, 5461–5468 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z., Shen, K., Lu, W. & Cole, P.A. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J. Biol. Chem. 278, 4668–4674 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, W., Gong, D., Bar-Sagi, D. & Cole, P.A. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Leive, L. A nonspecific increase in permeability in Escherichia coli produced by EDTA. Proc. Natl. Acad. Sci. USA 53, 745–750 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fickel, T.E. & Gilvarg, C. Transport of impermeant substances in E. coli by way of oligopeptide permease. Nat. New Biol. 241, 161–163 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Ames, B.N., Ames, G.F., Young, J.D., Tsuchiya, D. & Lecocq, J. Illicit transport: the oligopeptide permease. Proc. Natl. Acad. Sci. USA 70, 456–458 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parrish, A.R. et al. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs. ACS Chem. Biol. 7, 1292–1302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Payne, J.W. & Gilvarg, C. The role of the terminal carboxyl group on peptide transport in Escherichia coli. J. Biol. Chem. 243, 335–340 (1968).

    Article  CAS  PubMed  Google Scholar 

  30. Verkamp, E., Backman, V.M., Björnsson, J.M., Söll, D. & Eggertsson, G. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. J. Bacteriol. 175, 1452–1456 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brustad, E. et al. A genetically encoded boronate-containing amino acid. Angew. Chem. Int. Ed. Engl. 47, 8220–8223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Zitterbart, R. & Seitz, O. Parallel chemical protein synthesis on a surface enables the rapid analysis of the phosphoregulation of SH3 domains. Angew. Chem. Int. Ed. Engl. 55, 7252–7256 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Chatterjee, A., Sun, S.B., Furman, J.L., Xiao, H. & Schultz, P.G. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Viguera, A.R., Arrondo, J.L.R., Musacchio, A., Saraste, M. & Serrano, L. Characterization of the interaction of natural proline-rich peptides with five different SH3 domains. Biochemistry 33, 10925–10933 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Young, D.D. et al. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50, 1894–1900 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. H. S. Lu, C., Liu, K., Tan, L.P. & Yao, S.Q. Current chemical biology tools for studying protein phosphorylation and dephosphorylation. Chemistry 18, 28–39 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Liu, D.R. & Schultz, P.G. Progress toward the evolution of an organism with an expanded genetic code. Proc. Natl. Acad. Sci. USA 96, 4780–4785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, H.-S. et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333, 1151–1154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan, C., Ip, K. & Söll, D. Expanding the genetic code of Escherichia coli with phosphotyrosine. FEBS Lett. 590, 3040–3047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. Vagin, A.A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge K. Williams for the assistance in manuscript preparation. X-ray diffraction data were collected at the Advanced Photon Source (APS) beamline 23ID-B. Use of the Advanced Photon Source for data collection was supported by the DOE, Basic Energy Sciences, Office of Science, under contract no. DE-AC02- 06CH11357. GM/CA CAT has been funded in whole or in part with federal funds from NCI (grant Y1-CO-1020) and NIGMS (grant Y1-GM-1104). The NIH and DOE funders at the beamlines had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported by NIH Grant 5R01 GM062159-14 (to P.G.S). This is manuscript 29424 of The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

X. Luo, P.G.S., and F.W. designed the research. X. Luo, G.F., and R.E.W. performed protein expression, purification, and crystallization. X. Luo, R.E.W., C.Z., R.L., W.X., C.H. and P.-Y.Y. performed chemical synthesis. X. Luo, T.L., J.D., M.K., and Y.Z. performed the cloning and screening of synthetases, expression of target proteins. X.Z. performed X-ray diffraction experiments.; X. Luo, G.F., X.Z., X. Lyu., I.A.W. and F.W. performed crystallographic analysis and data deposition. X. Luo, H.G., and A.Y. performed fluorescence polarization assay. X. Luo, T.L., W.X., P.G.S. and F.W. analyzed the data; and X. Luo, S.A.R., P.G.S. and F.W. wrote the paper.

Corresponding authors

Correspondence to Peter G Schultz or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–7 (PDF 917 kb)

Supplementary Note

Supplementary Procedures (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Fu, G., Wang, R. et al. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat Chem Biol 13, 845–849 (2017). https://doi.org/10.1038/nchembio.2405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing