Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Purinyl-cobamide is a native prosthetic group of reductive dehalogenases

Abstract

Cobamides such as vitamin B12 are structurally conserved, cobalt-containing tetrapyrrole biomolecules that have essential biochemical functions in all domains of life. In organohalide respiration, a vital biological process for the global cycling of natural and anthropogenic organohalogens, cobamides are the requisite prosthetic groups for carbon–halogen bond-cleaving reductive dehalogenases. This study reports the biosynthesis of a new cobamide with unsubstituted purine as the lower base and assigns unsubstituted purine a biological function by demonstrating that Coα-purinyl-cobamide (purinyl-Cba) is the native prosthetic group in catalytically active tetrachloroethene reductive dehalogenases of Desulfitobacterium hafniense. Cobamides featuring different lower bases are not functionally equivalent, and purinyl-Cba elicits different physiological responses in corrinoid-auxotrophic, organohalide-respiring bacteria. Given that cobamide-dependent enzymes catalyze key steps in essential metabolic pathways, the discovery of a novel cobamide structure and the realization that lower bases can effectively modulate enzyme activities generate opportunities to manipulate functionalities of microbiomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cobamide general structure and the 16 known lower bases found in naturally occurring cobamides.
Figure 2: Spectrophotometric and structural features of Desulfitobacterium native corrinoids.
Figure 3: Identification of purinyl-Cba as the native prosthetic group in Dsf PCE RDase following nondenaturing, gel-electrophoretic separation of Dsf crude protein extracts using BN–PAGE.
Figure 4: Phylogenetic analysis of CobT homologous proteins and substrate specificity of Dsf CobT.
Figure 5: Effects of purinyl-Cba substitution for vitamin B12 on the activity of corrinoid-auxotrophic, organohalide-respiring bacteria.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Renz, P. in Chemistry and Biochemistry of B12 (ed. Banerjee, R.) 558–572 (John Wiley & Sons, Inc., 1999).

  2. Gruber, K., Puffer, B. & Kräutler, B. Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids. Chem. Soc. Rev. 40, 4346–4363 (2011).

    CAS  PubMed  Google Scholar 

  3. Kräutler, B. et al. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12, a new type of a natural corrinoid. Helv. Chim. Acta 86, 3698–3716 (2003).

    Google Scholar 

  4. Im, J., Walshe-Langford, G.E., Moon, J.-W. & Löffler, F.E. Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf). Environ. Sci. Technol. 48, 13181–13187 (2014).

    CAS  PubMed  Google Scholar 

  5. Maillard, J. et al. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl. Environ. Microbiol. 69, 4628–4638 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao, R.-Z., Chen, S.-L. & Siegbahn, P.E.M. Which oxidation state initiates dehalogenation in the B12-dependent enzyme NpRdhA: CoII, CoI, or Co0? ACS Catal. 5, 7350–7358 (2015).

    CAS  Google Scholar 

  7. Bommer, M. et al. Structural basis for organohalide respiration. Science 346, 455–458 (2014).

    CAS  PubMed  Google Scholar 

  8. Payne, K.A.P. et al. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517, 513–516 (2015).

    CAS  PubMed  Google Scholar 

  9. Löffler, F.E. et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625–635 (2013).

    PubMed  Google Scholar 

  10. Yan, J. et al. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. ISME J. 10, 1092–1101 (2016).

    CAS  PubMed  Google Scholar 

  11. Yi, S. et al. Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl. Environ. Microbiol. 78, 7745–7752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mok, K.C. & Taga, M.E. Growth inhibition of Sporomusa ovata by incorporation of benzimidazole bases into cobamides. J. Bacteriol. 195, 1902–1911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stupperich, E., Eisinger, H.-J. & Kräutler, B. Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata. Eur. J. Biochem. 186, 657–661 (1989).

    CAS  PubMed  Google Scholar 

  14. Villemur, R., Lanthier, M., Beaudet, R. & Lépine, F. The Desulfitobacterium genus. FEMS Microbiol. Rev. 30, 706–733 (2006).

    CAS  PubMed  Google Scholar 

  15. Ding, C., Zhao, S. & He, J. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ. Microbiol. 16, 3387–3397 (2014).

    CAS  PubMed  Google Scholar 

  16. Suyama, A., Yamashita, M., Yoshino, S. & Furukawa, K. Molecular characterization of the PceA reductive dehalogenase of desulfitobacterium sp. strain Y51. J. Bacteriol. 184, 3419–3425 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reinhold, A. et al. Impact of vitamin B12 on formation of the tetrachloroethene reductive dehalogenase in Desulfitobacterium hafniense strain Y51. Appl. Environ. Microbiol. 78, 8025–8032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nonaka, H. et al. Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J. Bacteriol. 188, 2262–2274 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Crofts, T.S., Seth, E.C., Hazra, A.B. & Taga, M.E. Cobamide structure depends on both lower ligand availability and CobT substrate specificity. Chem. Biol. 20, 1265–1274 (2013).

    CAS  PubMed  Google Scholar 

  20. Yan, J., Im, J., Yang, Y. & Löffler, F.E. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Phil. Trans. R. Soc. Lond. B 368, 20120320 (2013).

    Google Scholar 

  21. Keller, S. et al. Exogenous 5,6-dimethylbenzimidazole caused production of a non-functional tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. Environ. Microbiol. 16, 3361–3369 (2014).

    CAS  PubMed  Google Scholar 

  22. Guimarães, D.H., Weber, A., Klaiber, I., Vogler, B. & Renz, P. Guanylcobamide and hypoxanthylcobamide-corrinoids formed by Desulfovibrio vulgaris. Arch. Microbiol. 162, 272–276 (1994).

    Google Scholar 

  23. Stasyuk, O.A., Szatyłowicz, H. & Krygowski, T.M. Effect of the H-bonding on aromaticity of purine tautomers. J. Org. Chem. 77, 4035–4045 (2012).

    CAS  PubMed  Google Scholar 

  24. Moffatt, B.A. & Ashihara, H. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1, e0018 (2002).

    PubMed  PubMed Central  Google Scholar 

  25. Kublik, A. et al. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ. Microbiol. 18, 3044–3056 (2016).

    CAS  PubMed  Google Scholar 

  26. Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R. & Meyer, O. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293, 1281–1285 (2001).

    CAS  PubMed  Google Scholar 

  27. Iverson, T.M., Luna-Chavez, C., Cecchini, G. & Rees, D.C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284, 1961–1966 (1999).

    CAS  PubMed  Google Scholar 

  28. Rosemeyer, H. The chemodiversity of purine as a constituent of natural products. Chem. Biodivers. 1, 361–401 (2004).

    CAS  PubMed  Google Scholar 

  29. Löfgren, N. & Lüning, B. On the structure of nebularine. Acta Chem. Scand. 7, 225 (1953).

    Google Scholar 

  30. Nakamura, G. Studies on antibiotic actinomycetes. III. on Streptomyces producing 9-β-D-ribofuranosylpurine. J. Antibiot. 14, 94–97 (1961).

    Google Scholar 

  31. Cooper, R., Horan, A.C., Gunnarsson, I., Patel, M. & Truumees, I. Nebularine from a novel Microbispora sp. J. Ind. Microbiol. 1, 275–276 (1986).

    CAS  Google Scholar 

  32. Gordon, M.P. & Brown, G.B. A study of the metabolism of purine riboside. J. Biol. Chem. 220, 927–937 (1956).

    CAS  PubMed  Google Scholar 

  33. Brown, E.G. & Konuk, M. Plant cytotoxicity of nebularine (purine riboside). Phytochemistry 37, 1589–1592 (1994).

    CAS  Google Scholar 

  34. el Kouni, M.H., Messier, N.J. & Cha, S. Treatment of schistosomiasis by purine nucleoside analogues in combination with nucleoside transport inhibitors. Biochem. Pharmacol. 36, 3815–3821 (1987).

    CAS  PubMed  Google Scholar 

  35. Brown, E.G. & Konuk, M. Biosynthesis of nebularine (purine 9-β-D-ribofuranoside) involves enzymic release of hydroxylamine from adenosine. Phytochemistry 38, 61–71 (1995).

    CAS  Google Scholar 

  36. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 (1998).

    CAS  PubMed  Google Scholar 

  37. Burnstock, G. Purinergic signalling and disorders of the central nervous system. Nat. Rev. Drug Discov. 7, 575–590 (2008).

    CAS  PubMed  Google Scholar 

  38. Di Virgilio, F. & Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 36, 293–303 (2017).

    CAS  PubMed  Google Scholar 

  39. Miles, Z.D., McCarty, R.M., Molnar, G. & Bandarian, V. Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. Proc. Natl. Acad. Sci. USA 108, 7368–7372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Parks, J.M. et al. The genetic basis for bacterial mercury methylation. Science 339, 1332–1335 (2013).

    CAS  PubMed  Google Scholar 

  41. Randaccio, L., Geremia, S., Demitri, N. & Wuerges, J. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules 15, 3228–3259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schneider, Z. in Comprehensive B12: Chemistry, Biochemistry, Nutrition, Ecology, Medicine (eds. Schneider, Z. & Stroiński, A.) 93–104 (Walter de Gruyter & Co., 1987).

  43. Degnan, P.H., Taga, M.E. & Goodman, A.L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Suyama, A. et al. Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci. Biotechnol. Biochem. 65, 1474–1481 (2001).

    CAS  PubMed  Google Scholar 

  45. Yan, J., Ritalahti, K.M., Wagner, D.D. & Löffler, F.E. Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl. Environ. Microbiol. 78, 6630–6636 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Holliger, C. et al. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169, 313–321 (1998).

    CAS  PubMed  Google Scholar 

  47. Hazra, A.B. et al. Anaerobic biosynthesis of the lower ligand of vitamin B12 . Proc. Natl. Acad. Sci. USA 112, 10792–10797 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, P.-H. et al. Refined experimental annotation reveals conserved corrinoid autotrophy in chloroform-respiring Dehalobacter isolates. ISME J. 11, 626–640 (2017).

    PubMed  Google Scholar 

  49. Tang, S. et al. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 79, 974–981 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  PubMed  Google Scholar 

  51. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    CAS  PubMed  Google Scholar 

  52. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    CAS  PubMed  Google Scholar 

  53. Ritalahti, K.M. et al. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72, 2765–2774 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Patiny, L. & Borel, A. ChemCalc: a building block for tomorrow's chemical infrastructure. J. Chem. Inf. Model. 53, 1223–1228 (2013).

    CAS  PubMed  Google Scholar 

  55. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang, L. et al. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. 12, 621–627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hazra, A.B., Tran, J.L.A., Crofts, T.S. & Taga, M.E. Analysis of substrate specificity in CobT homologs reveals widespread preference for DMB, the lower axial ligand of vitamin (B12). Chem. Biol. 20, 1275–1285 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Maillard, École Polytechnique Fédérale de Lausanne, France, for providing Dehalobacter restrictus strain PER-K23. We also thank R. Flick from the BioZone Mass Spectrometry facility, Toronto, for LC/MS assistance. This research was supported by a grant from the Superfund Research Program under the National Institute of Environmental Health Sciences (R01ES024294) to F.E.L., with additional support provided by the Strategic Environmental Research and Development Program (SERDP project ER-2312) to F.E.L. and by the Natural Science and Engineering Research Council of Canada (NSERC) Industrial Biocatalysis Network to E.A.E. Y. Yin acknowledges the financial support from the China-UT One-Hundred Scholars Program by the China Scholarship Council and the University of Tennessee.

Author information

Authors and Affiliations

Authors

Contributions

F.E.L., J.Y., and S.R.C. conceptualized the research and designed experiments. J.Y., M.B., B.S., Y. Yang, and Y. Yin performed cultivation work, corrinoid extraction and purification, and phylogenetic analyses. A.K.B. and A.T.F. performed LC–MS and structural analyses. P.W., O.M. and A.T.Q. performed BN–PAGE, enzyme assays, and proteomic analysis. N.J. generated cobT expression clones. All authors contributed to data analysis and interpretation, and J.Y., S.R.C., E.A.E., and F.E.L. wrote the manuscript.

Corresponding authors

Correspondence to Jun Yan or Frank E Löffler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–5, Supplementary Figures 1–9 (PDF 2166 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Bi, M., Bourdon, A. et al. Purinyl-cobamide is a native prosthetic group of reductive dehalogenases. Nat Chem Biol 14, 8–14 (2018). https://doi.org/10.1038/nchembio.2512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing