Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis

Abstract

Biosynthesis of the phytohormone jasmonoyl-isoleucine (JA-Ile) requires reduction of the JA precursor 12-oxo-phytodienoic acid (OPDA) by OPDA reductase 3 (OPR3). Previous analyses of the opr3-1 Arabidopsis mutant suggested an OPDA signaling role independent of JA-Ile and its receptor COI1; however, this hypothesis has been challenged because opr3-1 is a conditional allele not completely impaired in JA-Ile biosynthesis. To clarify the role of OPR3 and OPDA in JA-independent defenses, we isolated and characterized a loss-of-function opr3-3 allele. Strikingly, opr3-3 plants remained resistant to necrotrophic pathogens and insect feeding, and activated COI1-dependent JA-mediated gene expression. Analysis of OPDA derivatives identified 4,5-didehydro-JA in wounded wild-type and opr3-3 plants. OPR2 was found to reduce 4,5-didehydro-JA to JA, explaining the accumulation of JA-Ile and activation of JA-Ile-responses in opr3-3 mutants. Our results demonstrate that in the absence of OPR3, OPDA enters the β-oxidation pathway to produce 4,5-ddh-JA as a direct precursor of JA and JA-Ile, thus identifying an OPR3-independent pathway for JA biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: opr3-3 is a complete loss-of-function allele.
Figure 2: opr3-3 mutants activate defense responses.
Figure 3: JA accumulation in Col-0 and opr3-3 plants.
Figure 4: 4,5-Didehydro-JA triggers JA-regulated COI1-dependent responses.
Figure 5: OPDA conversion into 4,5-ddh-JA, JA, and JA-Ile.
Figure 6: OPR2 converts 4,5-ddh-JA into JA.

Similar content being viewed by others

References

  1. Chini, A., Gimenez-Ibanez, S., Goossens, A. & Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33, 147–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Fonseca, S., Chico, J.M. & Solano, R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12, 539–547 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Gimenez-Ibanez, S., Boter, M. & Solano, R. Novel players fine-tune plant trade-offs. Essays Biochem. 58, 83–100 (2015).

    Article  PubMed  Google Scholar 

  4. Goossens, J., Fernández-Calvo, P., Schweizer, F. & Goossens, A. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 91, 673–689 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Acosta, I.F. & Farmer, E.E. Jasmonates. Arabidopsis Book 8, e0129 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Fonseca, S. et al. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Sheard, L.B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Schaller, A. & Stintzi, A. Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochemistry 70, 1532–1538 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Schaller, F., Biesgen, C., Müssig, C., Altmann, T. & Weiler, E.W. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210, 979–984 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Strassner, J. et al. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J. 32, 585–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Schaller, F., Schaller, A. & Stintzi, A. Biosynthesis and metabolism of Jasmonates. J. Plant Growth Regul. 23, 179–199 (2004).

    Article  CAS  Google Scholar 

  15. Baker, A., Graham, I.A., Holdsworth, M., Smith, S.M. & Theodoulou, F.L. Chewing the fat: β-oxidation in signalling and development. Trends Plant Sci. 11, 124–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Weber, H., Vick, B.A. & Farmer, E.E. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl. Acad. Sci. USA 94, 10473–10478 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Staswick, P.E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stintzi, A. & Browse, J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97, 10625–10630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E.E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA 98, 12837–12842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chehab, E.W. et al. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol. 156, 770–778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bosch, M. et al. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol. 166, 396–410 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dave, A. et al. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23, 583–599 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gleason, C., Leelarasamee, N., Meldau, D. & Feussner, I. OPDA has key role in regulating plant susceptibility to the root-knot nematode meloidogyne hapla in Arabidopsis. Front. Plant Sci. 7, 1565 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mueller, S. et al. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20, 768–785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park, S.W. et al. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. USA 110, 9559–9564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ribot, C., Zimmerli, C., Farmer, E.E., Reymond, P. & Poirier, Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol. 147, 696–706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scalschi, L. et al. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Plant J. 81, 304–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Stotz, H.U. et al. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. Plant Cell Physiol. 52, 1941–1956 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Taki, N. et al. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139, 1268–1283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raacke, I.C., Mueller, M.J. & Berger, S. Defects in allene oxide synthase and 12-oxa-phytodienoic acid reductase alter the resistance to Pseudomonas syringae and Botrytis cinerea. Phytopathology 154, 740–744 (2006).

    Article  CAS  Google Scholar 

  31. Acosta, I.F. et al. Role of NINJA in root jasmonate signaling. Proc. Natl. Acad. Sci. USA 110, 15473–15478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robinson, S.J. et al. An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol. 9, 101 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sanders, P.M. et al. The arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12, 1041–1061 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dathe, W. et al. Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153, 530–535 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Biesgen, C. & Weiler, E.W. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta 208, 155–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Delessert, C., Wilson, I.W., Van Der Straeten, D., Dennis, E.S. & Dolferus, R. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol. Biol. 55, 165–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kienow, L. et al. Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J. Exp. Bot. 59, 403–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Koo, A.J., Chung, H.S., Kobayashi, Y. & Howe, G.A. Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J. Biol. Chem. 281, 33511–33520 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Schneider, K. et al. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J. Biol. Chem. 280, 13962–13972 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Li, C. et al. Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17, 971–986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Breithaupt, C. et al. Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. J. Mol. Biol. 392, 1266–1277 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Schaller, F., Hennig, P. & Weiler, E.W. 12-Oxophytodienoate-10,11-reductase: occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acid. Plant Physiol. 118, 1345–1351 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koo, A.J., Gao, X., Jones, A.D. & Howe, G.A. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 59, 974–986 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Farmer, E.E. & Davoine, C. Reactive electrophile species. Curr. Opin. Plant Biol. 10, 380–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Farmer, E.E. & Mueller, M.J. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64, 429–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Han, G.Z. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 68, 1323–1331. https://doi.org/10.1093/jxb/erw470 (2017).

    CAS  PubMed  Google Scholar 

  47. Li, W. et al. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol. Biol. 9, 90 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Stumpe, M. et al. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 188, 740–749 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto, Y. et al. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116, 48–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Záveská Drábková, L., Dobrev, P.I. & Motyka, V. Phytohormone Profiling across the Bryophytes. PLoS One 10, e0125411 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gimenez-Ibanez, S. et al. JAZ2 controls stomata dynamics during bacterial invasion. New Phytol. 213, 1378–1392 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Monte, I. et al. Rational design of a ligand-based antagonist of jasmonate perception. Nat. Chem. Biol. 10, 671–676 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Chini, A. Application of yeast-two hybrid assay to chemical genomic screens: a high-throughput system to identify novel molecules modulating plant hormone receptor complexes. Methods Mol. Biol. 1056, 35–43 (2014).

    Article  PubMed  Google Scholar 

  54. Schaller, F. & Weiler, E.W. Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana. Structural and functional relationship to yeast old yellow enzyme. J. Biol. Chem. 272, 28066–28072 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Rubio, J.J. Sánchez-Serrano, J. Salinas and members of R.S.'s lab for critical reading of the manuscript and C. Mark for English editing. U. Olsson, Karolinska Institutet, is thanked for her assistance with NMR analysis and F. Schaller (Ruhr-University Bochum, Germany) for OPR1/2 constructs. Work in R.S.'s lab was funded by the Spanish Ministry for Science and Innovation grant BIO2016-77216-R (AEI/FEDER, EU) and Fundación UAM Grant 2015007. P.R. and S.L. are funded by the Swiss National Science Foundation Grant Nr. 31003A_169278. Work in A.S.'s lab was supported by the German Research Foundation (DFG; SCHA 591/6-1, STI 295/2-1).

Author information

Authors and Affiliations

Authors

Contributions

A.C., M.H., A. Schaller, A. Stintzi, P.R., J.M.G.-M. and R.S. designed the experiments, A.C. performed experiments in Figures 1, 2, 4c, and 6e,f and Supplementary Figures 2, 3, 7 and 8 and prepared the material for measurements in Figures 3, 5, and 6a–c and SF4. I.M. performed experiments in Figure 4a,b. A.M.Z. made metabolite measurements in Figures 3, 5 and 6 and Supplementary Figures 4–7. M.H. synthesized all chemicals described in methods. S.L. performed insect assays. S.W. performed experiments in Figure 6d. A. Schaller and A. Stintzi obtained the double opr mutants. A.P. recorded NMR data. All authors interpreted the results. A.C. and R.S. wrote the manuscript. All authors edited and commented on the manuscript. R.S. supervised the work.

Corresponding author

Correspondence to Roberto Solano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–8 (PDF 2550 kb)

Life Sciences Reporting Summary (PDF 67 kb)

Supplementary Note 1

Synthetic Procedures (PDF 789 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chini, A., Monte, I., Zamarreño, A. et al. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat Chem Biol 14, 171–178 (2018). https://doi.org/10.1038/nchembio.2540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing