Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont

Abstract

Colonic bacteria, exemplified by Bacteroides thetaiotaomicron, play a key role in maintaining human health by harnessing large families of glycoside hydrolases (GHs) to exploit dietary polysaccharides and host glycans as nutrients. Such GH family expansion is exemplified by the 23 family GH92 glycosidases encoded by the B. thetaiotaomicron genome. Here we show that these are α-mannosidases that act via a single displacement mechanism to utilize host N-glycans. The three-dimensional structure of two GH92 mannosidases defines a family of two-domain proteins in which the catalytic center is located at the domain interface, providing acid (glutamate) and base (aspartate) assistance to hydrolysis in a Ca2+-dependent manner. The three-dimensional structures of the GH92s in complex with inhibitors provide insight into the specificity, mechanism and conformational itinerary of catalysis. Ca2+ plays a key catalytic role in helping distort the mannoside away from its ground-state 4C1 chair conformation toward the transition state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human N-glycans and the role of α-mannosidases.
Figure 2: Three-dimensional structure of GH92 α-1,2-mannosidase Bt3990.
Figure 3: The active center of Bt3990 and catalysis with inversion of anomeric configuration.
Figure 4: Interactions of thiomannobioside with GH92 α-1,2-mannosidase Bt3990.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ley, R.E., Peterson, D.A. & Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  Google Scholar 

  2. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  Google Scholar 

  3. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  Google Scholar 

  4. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  Google Scholar 

  5. Mazmanian, S.K., Round, J.L. & Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  Google Scholar 

  6. Kim, Y.S. & Milner, J.A. Dietary modulation of colon cancer risk. J. Nutr. 137, 2576S–2579S (2007).

    Article  Google Scholar 

  7. Cerdeno-Tarraga, A.M. et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307, 1463–1465 (2005).

    Article  CAS  Google Scholar 

  8. Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  Google Scholar 

  9. Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156 (2007).

    Article  Google Scholar 

  10. Gill, S.R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  Google Scholar 

  11. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  Google Scholar 

  12. Maruyama, Y., Nakajima, T. & Ichishima, E. A 1,2-alpha-D-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr. Res. 251, 89–98 (1994).

    Article  CAS  Google Scholar 

  13. Davies, G.J., Wilson, K.S. & Henrissat, B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321, 557–559 (1997).

    Article  CAS  Google Scholar 

  14. Vocadlo, D. & Davies, G.J. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol. 12, 539–555 (2008).

    Article  CAS  Google Scholar 

  15. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  16. Heikinheimo, P. et al. The structure of bovine lysosomal alpha-mannosidase suggests a novel mechanism for low-pH activation. J. Mol. Biol. 327, 631–644 (2003).

    Article  CAS  Google Scholar 

  17. Gibson, R.P. et al. Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew. Chem. Int. Ed. 46, 4115–4119 (2007).

    Article  CAS  Google Scholar 

  18. Nurizzo, D., Nagy, T., Gilbert, H.J. & Davies, G.J. The structural basis for catalysis and specificity of the Pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure 10, 547–556 (2002).

    Article  CAS  Google Scholar 

  19. Damude, H.G., Withers, S.G., Kilburn, D.G., Miller, R.C. Jr & Warren, R.A.J. Site-directed mutation of the putative catalytic residues of endoglucanase CenA from Cellulomonas fimi. Biochemistry 34, 2220–2224 (1995).

    Article  CAS  Google Scholar 

  20. Davies, G.J., Ducros, V.M.A., Varrot, A. & Zechel, D.L. Mapping the conformational itinerary of β-glycosidases by X-ray crystallography. Biochem. Soc. Trans. 31, 523–527 (2003).

    Article  CAS  Google Scholar 

  21. Vallee, F., Karaveg, K., Herscovics, A., Moremen, K.W. & Howell, P.L. Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases. J. Biol. Chem. 275, 41287–41298 (2000).

    Article  CAS  Google Scholar 

  22. Numao, S., Kuntz, D.A., Withers, S.G. & Rose, D.R. Insights into the mechanism of Drosophila melanogaster Golgi alpha-mannosidase II through the structural analysis of covalent reaction intermediates. J. Biol. Chem. 278, 48074–48083 (2003).

    Article  CAS  Google Scholar 

  23. Karaveg, K. et al. Mechanism of class 1 (Glycosylhydrolase family 47) alpha-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J. Biol. Chem. 280, 16197–16207 (2005).

    Article  CAS  Google Scholar 

  24. Ducros, V. et al. Substrate distortion by a β-mannanase: snapshots of the Michaelis and covalent intermediate complexes suggest a B2,5 conformation for the transition-state. Angew. Chem. Int. Ed. 41, 2824–2827 (2002).

    Article  CAS  Google Scholar 

  25. Tailford, L.E. et al. Structural and biochemical evidence for a boat-like transition state in β-mannosidases. Nat. Chem. Biol. 4, 306–312 (2008).

    Article  CAS  Google Scholar 

  26. Offen, W.A., Zechel, D.L., Withers, S.G., Gilbert, H.J. & Davies, G.J. Structure of the Michaelis complex of β−mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis. Chem. Commun. (Camb.) 2484–2486 (2009).

  27. Whitfield, D.M. DFT studies of the ionization of alpha and beta glycopyranosyl donors. Carbohydr. Res. 342, 1726–1740 (2007).

    Article  CAS  Google Scholar 

  28. Terinek, M. & Vasella, A. Synthesis and evaluation of two mannosamine-derived lactone-type inhibitors of snail beta-mannosidase. Tetrahedron Asymmetry 16, 449–469 (2005).

    Article  CAS  Google Scholar 

  29. Kayakiri, H. et al. Structure of kifunensine, a new immunomodulator isolated from an actinomycete. J. Org. Chem. 54, 4015–4016 (1989).

    Article  CAS  Google Scholar 

  30. Crich, D. & Chandrasekera, N.S. Mechanism of 4,6–0-benzylidene-directed beta-mannosylation as determined by alpha-deuterium kinetic isotope effects. Angew. Chem. Int. Ed. 43, 5386–5389 (2004).

    Article  CAS  Google Scholar 

  31. Bjursell, M.K., Martens, E.C. & Gordon, J.I. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J. Biol. Chem. 281, 36269–36279 (2006).

    Article  CAS  Google Scholar 

  32. Martens, E.C., Chiang, H.C. & Gordon, J.I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    Article  CAS  Google Scholar 

  33. Ito, Y. & Ogawa, T. A novel-approach to the stereoselective synthesis of beta-mannosides. Angew. Chem. Int. Edn Engl. 33, 1765–1767 (1994).

    Article  Google Scholar 

  34. Gridley, J.J. & Osborn, H.M.I. Recent advances in the construction of b-D-mannose and b-D-mannosamine linkages. J. Chem. Soc. Perkin Trans. 1 10, 1471–1491 (2000).

    Article  Google Scholar 

  35. Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6, 306–312 (2000).

    Article  CAS  Google Scholar 

  36. Kuntz, D., Zhong, W., Guo, J., Rose, D. & Boons, G. The molecular basis of inhibition of Golgi alpha-mannosidase II by mannostatin A. ChemBioChem 10, 268–277 (2009).

    Article  CAS  Google Scholar 

  37. Hogg, D. et al. Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J. Biol. Chem. 276, 31186–31192 (2001).

    Article  CAS  Google Scholar 

  38. Bolam, D. et al. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35, 16195–16204 (1996).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  41. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  42. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Withers (University of British Columbia) for compound 9. The Biotechnology and Biological Sciences Research Council of the UK is thanked for funding. M.D.L.S. is a European Molecular Biology Laboratory long-term fellowship holder, and G.J.D. is a Royal Society/Wolfson Research Merit Award recipient. C.D. was supported by a Marie Curie European Reintegration grant within the 7th European Community Framework Programme. Y.Z. is supported by the Department for Innovation, Universities and Skills (DIUS), UK, Newcastle University and the Chinese Scholarship Council. S.J.W. thanks the Australian Research Council for funding support. K.W.M. acknowledges the support of US National Institutes of Health grants GM047533, RR005351 and DK075322. S.C. is supported by a postdoctoral fellowship from the Agence Nationale de Recherche sur le Sida et les Hépatities Virales (ANRS). A.S. is supported by Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Contributions

H.J.G. and G.J.D. designed the experiments. Y.Z., M.D.L.S., A.J.T., C.D., N.S., Y.X. and K.W.M. performed or supervised molecular biology, kinetics, glycan analysis and X-ray crystallography. S.C., A.S., Z.D. and S.J.W. synthesized ligands. H.J.G., G.J.D. and S.J.W., aided by the other authors, wrote the paper.

Corresponding authors

Correspondence to Harry J Gilbert or Gideon J Davies.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–6 (PDF 1893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Suits, M., Thompson, A. et al. Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont. Nat Chem Biol 6, 125–132 (2010). https://doi.org/10.1038/nchembio.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing