Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibiotics as probes of biological complexity

Abstract

The utility of antibiotics has largely been based on their therapeutic application. However, in addition to clinical use, antibiotics have served as vital agents in probing bacterial complexity. Although not principally regarded as tools for dissecting bacterial genetics and biochemistry, antibiotics have nonetheless proved indispensable to understanding such essential functions as cell-wall biogenesis, DNA biosynthesis and the translation process. Herein we provide an overarching account of recent and landmark instances in which antibiotics have yielded critical information regarding many bacterial processes. We also elaborate on the importance of antibiotics and new chemical probes to the comprehension of genetic networks in the future. Given that antibiotics were among the first small molecules used to methodically perturb and understand biological systems, the past, present and future of antibiotics as probes of bacterial complexity offer some illustrative lessons for the broader field of chemical biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of the discovery of antibiotics and their use as probes of bacterial complexity.
Figure 2: Chloramphenicol probes the stress response of cells during disruption of protein translocation.
Figure 3: A vancomycin photoaffinity probe identifies the mechanism of vancomycin resistance.
Figure 4: Cephalexin probes the relationship between divisome assembly and cell lysis.
Figure 5: Discovery of a new chemical probe of wall teichoic acid synthesis.
Figure 6: A chemical-genetic interaction network of seven antibiotics.

Similar content being viewed by others

References

  1. Parker, R.F. & Luse, S. The action of penicillin on Staphylococcus: further observations on the effect of a short exposure. J. Bacteriol. 56, 75–81 (1948).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park, J.T. & Johnson, M.J. Accumulation of labile phosphate in Staphylococcus aureus grown in the presence of penicillin. J. Biol. Chem. 179, 585–592 (1949).

    Article  CAS  PubMed  Google Scholar 

  3. Park, J.T. Uridine-5′-pyrophosphate derivatives. III. Amino acid-containing derivatives. J. Biol. Chem. 194, 897–904 (1952).

    Article  CAS  PubMed  Google Scholar 

  4. Park, J.T. Uridine-5′-pyrophosphate derivatives. II. A structure common to three derivatives. J. Biol. Chem. 194, 885–895 (1952).

    Article  CAS  PubMed  Google Scholar 

  5. Park, J.T. Uridine-5′-pyrophosphate derivatives. II. Isolation from Staphylococcus aureus. J. Biol. Chem. 194, 877–884 (1952).

    Article  CAS  PubMed  Google Scholar 

  6. Park, J.T. & Strominger, J.L. Mode of action of penicillin. Science 125, 99–101 (1957). In this landmark paper, the authors identified the mode of action of penicillin, and from these studies hypothesized the chemical constituents of the bacterial cell wall.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen-Distèche, M. et al. Sensitivity to ampicillin and cephalothin of enzymes involved in wall peptide crosslinking in Escherichia coli K12, strain 44. Eur. J. Biochem. 41, 457–463 (1974).

    Article  PubMed  Google Scholar 

  8. Spratt, B.G. & Pardee, A.B. Penicillin-binding proteins and cell shape in E. coli. Nature 254, 516–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Strominger, J.L., Willoughby, E., Kamiryo, T., Blumberg, P.M. & Yocum, R.R. Penicillin-sensitive enzymes and penicillin-binding components in bacterial cells. Ann. NY Acad. Sci. 235, 210–224 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Suginaka, H., Blumberg, P.M. & Strominger, J.L. Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J. Biol. Chem. 247, 5279–5288 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Spratt, B.G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 72, 2999–3003 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van den Ent, F., Johnson, C.M., Persons, L., de Boer, P. & Lowe, J. Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J. 29, 1081–1090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gellert, M., Mizuuchi, K., O'Dea, M.H. & Nash, H.A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872–3876 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luttinger, A. The twisted 'life' of DNA in the cell: bacterial topoisomerases. Mol. Microbiol. 15, 601–606 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Gellert, M., O'Dea, M.H., Itoh, T. & Tomizawa, J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. USA 73, 4474–4478 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gellert, M., Mizuuchi, K., O'Dea, M.H., Itoh, T. & Tomizawa, J.I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. USA 74, 4772–4776 (1977). Using aminocoumarins and quinolone antibiotics as probes, this study revealed a second function of DNA gyrase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Higgins, N.P., Peebles, C.L., Sugino, A. & Cozzarelli, N.R. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc. Natl. Acad. Sci. USA 75, 1773–1777 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Piton, J. et al. Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase. PLoS ONE 5, e12245 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bax, B.D. et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466, 935–940 (2010).

    Article  PubMed  Google Scholar 

  22. Blanchard, S.C., Cooperman, B.S. & Wilson, D.N. Probing translation with small-molecule inhibitors. Chem. Biol. 17, 633–645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yarmolinsky, M.B. & Haba, G.L. Inhibition by puromycin of amino acid incorporation into protein. Proc. Natl. Acad. Sci. USA 45, 1721–1729 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nathans, D. Puromycin Inhibition of Protein Synthesis: Incorporation of Puromycin into Peptide Chains. Proc. Natl. Acad. Sci. USA 51, 585–592 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, H. et al. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129, 929–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Zavialov, A.V., Buckingham, R.H. & Ehrenberg, M. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107, 115–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Sternberg, S.H., Fei, J., Prywes, N., McGrath, K.A. & Gonzalez, R.L. Jr. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 16, 861–868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pavlov, M.Y., Antoun, A., Lovmar, M. & Ehrenberg, M. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J. 27, 1706–1717 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lockwood, A.H., Chakraborty, P.R. & Maitra, U. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation. Proc. Natl. Acad. Sci. USA 68, 3122–3126 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Traut, R.R. & Monro, R.E. The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10, 63–72 (1964).This study was among the first to use puromycin as a tool to understand protein synthesis and to probe the nature of the peptidyl transfer process.

    Article  CAS  PubMed  Google Scholar 

  31. Monro, R.E. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J. Mol. Biol. 26, 147–151 (1967).

    Article  CAS  PubMed  Google Scholar 

  32. Chadani, Y. et al. Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans-translation system. Mol. Microbiol. 78, 796–808 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. Jiang, L. et al. Recycling of aborted ribosomal 50S subunit-nascent chain-tRNA complexes by the heat shock protein Hsp15. J. Mol. Biol. 386, 1357–1367 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Ortega, L., Stephen, J. & Joseph, S. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G–dependent translocation. Mol. Cell 32, 292–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Shinagawa, H. SOS response as an adaptive response to DNA damage in prokaryotes. EXS 77, 221–235 (1996).

    CAS  PubMed  Google Scholar 

  36. Miller, C. et al. SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science 305, 1629–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Miller, C., Ingmer, H., Thomsen, L.E., Skarstad, K. & Cohen, S.N. DpiA binding to the replication origin of Escherichia coli plasmids and chromosomes destabilizes plasmid inheritance and induces the bacterial SOS response. J. Bacteriol. 185, 6025–6031 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Dwyer, D.J., Kohanski, M.A., Hayete, B. & Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kohanski, M.A., Dwyer, D.J., Wierzbowski, J., Cottarel, G. & Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).In this report, the authors elaborate on the their previous landmark findings that showed that bactericidal antibiotics lead to cell death via oxidative damage, here using antibiotics to elucidate the cellular events that occur between the time of antibiotic application and oxidative-stress-induced death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, H.H., Molla, M.N., Cantor, C.R. & Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Stelten, J., Silva, F., Belin, D. & Silhavy, T.J. Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325, 753–756 (2009).This work used antibiotics to explore the mechanistic details of protein translocation, which in turn provided insight regarding the origin of toxicity that results in cells struggling during protein secretion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rapoport, T.A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Bowers, C.W., Lau, F. & Silhavy, T.J. Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J. Bacteriol. 185, 5697–5705 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hegde, R.S. & Bernstein, H.D. The surprising complexity of signal sequences. Trends Biochem. Sci. 31, 563–571 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Koteva, K. et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat. Chem. Biol. 6, 327–329 (2010).Based on the use of a vancomycin photoaffinity probe, this report answered the long-standing question as to the precise mechanism of vancomycin resistance.

    Article  CAS  PubMed  Google Scholar 

  47. Tomasz, A. The mechanism of the irreversible antimicrobial effects of penicillins: how the β-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol. 33, 113–137 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Goehring, N.W. & Beckwith, J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. García del Portillo, F. & de Pedro, M.A. Differential effect of mutational impairment of penicillin-binding proteins 1A and 1B on Escherichia coli strains harboring thermosensitive mutations in the cell division genes ftsA, ftsQ, ftsZ, and pbpB. J. Bacteriol. 172, 5863–5870 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chung, H.S. et al. Rapid β-lactam–induced lysis requires successful assembly of the cell division machinery. Proc. Natl. Acad. Sci. USA 106, 21872–21877 (2009).In this work, cephalexin was employed as a chemical tool to explain the relationship between divisome assembly and cell lysis, revealing the mechanistic basis for the requirement of an intact divisome before lysis can take place.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uehara, T., Parzych, K.R., Dinh, T. & Bernhardt, T.G. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D'Elia, M.A. et al. Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. Chem. Biol. 16, 548–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Schirner, K., Marles-Wright, J., Lewis, R.J. & Errington, J. Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J. 28, 830–842 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collins, L.V. et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis. 186, 214–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Bhavsar, A.P., Beveridge, T.J. & Brown, E.D. Precise deletion of tagD and controlled depletion of its product, glycerol 3-phosphate cytidylyltransferase, leads to irregular morphology and lysis of Bacillus subtilis grown at physiological temperature. J. Bacteriol. 183, 6688–6693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D'Elia, M.A., Millar, K.E., Beveridge, T.J. & Brown, E.D. Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J. Bacteriol. 188, 8313–8316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D'Elia, M.A. et al. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J. Bacteriol. 188, 4183–4189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Swoboda, J.G. et al. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem. Biol. 4, 875–883 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Wong, S.L. et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

  66. Typas, A. et al. High-throughput, quantitative analyses of genetic interactions in E. coli. Nat. Methods 5, 781–787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Butland, G. et al. eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5, 789–795 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Tamae, C. et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J. Bacteriol. 190, 5981–5988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown, K.R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25, 3327–3329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nichols, R.J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Young, K. et al. Discovery of FabH/FabF inhibitors from natural products. Antimicrob. Agents Chemother. 50, 519–526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Donald, R.G. et al. A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem. Biol. 16, 826–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Li, X. et al. Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem. Biol. 11, 1423–1430 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Pathania, R. et al. Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nat. Chem. Biol. 5, 849–856 (2009).Using a genome-scale library of E. coli overexpression strains in combination with antibacterial compounds of unknown mechanism, this work led to the identification of a novel probe of lipoprotein targeting.

    Article  CAS  PubMed  Google Scholar 

  77. Yeh, P., Tschumi, A.I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Farha, M.A. & Brown, E.D. Chemical probes of Escherichia coli uncovered through chemical-chemical interaction profiling with compounds of known biological activity. Chem. Biol. 17, 852–862 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.D.B. acknowledges salary support from the Canada Research Chairs program and operating funds from the Canadian Institutes of Health Research (MOP-15496, MOP-64292 and MOP-81330) and Cystic Fibrosis Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

NAViGaTOR file for Figure 6 (XML 277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falconer, S., Czarny, T. & Brown, E. Antibiotics as probes of biological complexity. Nat Chem Biol 7, 415–423 (2011). https://doi.org/10.1038/nchembio.590

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing