Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer

Abstract

Linking the molecular aberrations of cancer to drug responses could guide treatment choice and identify new therapeutic applications. However, there has been no systematic approach for analyzing gene-drug interactions in human cells. Here we establish a multiplexed assay to study the cellular fitness of a panel of engineered isogenic cancer cells in response to a collection of drugs, enabling the systematic analysis of thousands of gene-drug interactions. Applying this approach to breast cancer revealed various synthetic-lethal interactions and drug-resistance mechanisms, some of which were known, thereby validating the method. NOTCH pathway activation, which occurs frequently in breast cancer, unexpectedly conferred resistance to phosphoinositide 3-kinase (PI3K) inhibitors, which are currently undergoing clinical trials in breast cancer patients. NOTCH1 and downstream induction of c-MYC over-rode the dependency of cells on the PI3K-mTOR pathway for proliferation. These data reveal a new mechanism of resistance to PI3K inhibitors with direct clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Barcode screen setup, detection and performance.
Figure 2: Combinatorial breast cancer gene small compound screen.
Figure 3: NOTCH activation renders breast cancer cells resistant to PI3K-mTORC1 inhibition.
Figure 4: c-MYC induction confers resistance to PI3K-mTOR inhibition.

Similar content being viewed by others

References

  1. Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 (2002).

    Article  CAS  Google Scholar 

  2. Trédan, O., Galmarini, C.M., Patel, K. & Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99, 1441–1454 (2007).

    Article  Google Scholar 

  3. Sharma, S.V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  Google Scholar 

  4. McDermott, U., Downing, J.R. & Stratton, M.R. Genomics and the continuum of cancer care. N. Engl. J. Med. 364, 340–350 (2011).

    Article  CAS  Google Scholar 

  5. Bernards, R. It's diagnostics, stupid. Cell 141, 13–17 (2010).

    Article  CAS  Google Scholar 

  6. Chin, L. & Gray, J.W. Translating insights from the cancer genome into clinical practice. Nature 452, 553–563 (2008).

    Article  CAS  Google Scholar 

  7. Lander, E.S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    Article  CAS  Google Scholar 

  8. Vogel, C.L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  Google Scholar 

  9. Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  Google Scholar 

  10. Deming, S.L., Nass, S.J., Dickson, R.B. & Trock, B.J. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br. J. Cancer 83, 1688–1695 (2000).

    Article  CAS  Google Scholar 

  11. Verdine, G.L. & Walensky, L.D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin. Cancer Res. 13, 7264–7270 (2007).

    Article  CAS  Google Scholar 

  12. Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  Google Scholar 

  13. Kaelin, W.G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  14. Nijman, S.M. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585, 1–6 (2011).

    Article  CAS  Google Scholar 

  15. Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  16. Fong, P.C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  Google Scholar 

  17. Reinhardt, H.C., Jiang, H., Hemann, M.T. & Yaffe, M.B. Exploiting synthetic lethal interactions for targeted cancer therapy. Cell Cycle 8, 3112–3119 (2009).

    Article  CAS  Google Scholar 

  18. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  Google Scholar 

  19. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    Article  CAS  Google Scholar 

  20. Workman, P., Clarke, P.A., Raynaud, F.I. & van Montfort, R.L. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res. 70, 2146–2157 (2010).

    Article  CAS  Google Scholar 

  21. Liu, P., Cheng, H., Roberts, T.M. & Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  Google Scholar 

  22. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  Google Scholar 

  23. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  Google Scholar 

  24. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  Google Scholar 

  25. Iavarone, A. & Massague, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 387, 417–422 (1997).

    Article  CAS  Google Scholar 

  26. Yang, D. et al. Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc. Natl. Acad. Sci. USA 107, 13836–13841 (2010).

    Article  CAS  Google Scholar 

  27. Maira, S.M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    Article  CAS  Google Scholar 

  28. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  Google Scholar 

  29. Laplante, M. & Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009).

    Article  CAS  Google Scholar 

  30. Feldman, M.E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    Article  Google Scholar 

  31. Serra, V. et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022–8030 (2008).

    Article  CAS  Google Scholar 

  32. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004).

    Article  CAS  Google Scholar 

  33. Klinakis, A. et al. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc. Natl. Acad. Sci. USA 103, 9262–9267 (2006).

    Article  CAS  Google Scholar 

  34. Palomero, T. et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 103, 18261–18266 (2006).

    Article  CAS  Google Scholar 

  35. Weng, A.P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    Article  CAS  Google Scholar 

  36. Reedijk, M. et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530–8537 (2005).

    Article  CAS  Google Scholar 

  37. Lin, C.J., Malina, A. & Pelletier, J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res. 69, 7491–7494 (2009).

    Article  CAS  Google Scholar 

  38. Ruggero, D. & Pandolfi, P.P. Does the ribosome translate cancer? Nat. Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  39. Fojo, T. & Grady, C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J. Natl. Cancer Inst. 101, 1044–1048 (2009).

    Article  Google Scholar 

  40. Brachmann, S.M. et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc. Natl. Acad. Sci. USA 106, 22299–22304 (2009).

    Article  CAS  Google Scholar 

  41. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  Google Scholar 

  42. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  43. Stegmaier, K. et al. Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med. 4, e122 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the T. Berg, A. Harutyunyan, U. Rix and G. Hofbauer for technical assistance; F. Ganglberger, B. Eizinger and P. Markt for assisting in data analysis; and H. Pickersgill, M. Creyghton and G. Superti-Furga for critical reading and suggestions. We are grateful to T. Golub and C. Yu for support and discussions in the early phases of the project; and to A. D'Andrea, H. Dolznig, C. Tabin, T. Brummelkamp, R. Bernards, P. Eichhorn, D. Peeper, W. Hahn, R. Conaway, J. Conaway, R. Weinberg, I. Screpanti, J. Zhao, R. Hynes, Y. Xiong, R. Basch, B. Vogelstein, D. Bulavin, P. Yaswen, R. Kopan, M. Parker, J. Bradner and D. Root for providing reagents. We thank Luminex for providing reagents and support. This work was made possible by research grants from the Austrian Science Fund (FWF, P21768-B13) and the Vienna Science and Technology Fund (WWTF, LS09-009).

Author information

Authors and Affiliations

Authors

Contributions

S.M.B.N. and M.K.M. conceived the study, designed experiments, analyzed data and wrote the manuscript. M.K.M. and S.M.B.N., with help from I.Z.U. and N.C.-M., set up the multiplexing assay. B.V.G., I.Z.U and M.K.M. created and characterized the isogenic cell lines. J.C. and G.D. designed the analysis platform and database infrastructure for the screen. G.D. and M.K.M. analyzed the screening data and wrote R code to identify hits. M.K.M. performed the majority of experiments. C.K., M.S., H.L. and S.M.B.N. performed and helped with additional experiments.

Corresponding author

Correspondence to Sebastian M B Nijman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 6912 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muellner, M., Uras, I., Gapp, B. et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 7, 787–793 (2011). https://doi.org/10.1038/nchembio.695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.695

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer