Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: tuning into the genetic orchestra using microarrays—limitations of DNA microarrays in clinical practice

Abstract

Scientific advances in the field of genetics and gene-expression profiling have revolutionized the concept of patient-tailored treatment. Analysis of differential gene-expression patterns across thousands of biological samples in a single experiment (as opposed to hundreds to thousands of experiments measuring the expression of one gene at a time), and extrapolation of these data to answer clinically pertinent questions such as those relating to tumor metastatic potential, can help define the best therapeutic regimens for particular patient subgroups. The use of microarrays provides a powerful technology, allowing in-depth analysis of gene-expression profiles. Currently, microarray technology is in a transition phase whereby scientific information is beginning to guide clinical practice decisions. Before microarrays qualify as a useful clinical tool, however, they must demonstrate reliability and reproducibility. The high-throughput nature of microarray experiments imposes numerous limitations, which apply to simple issues such as sample acquisition and data mining, to more controversial issues that relate to the methods of biostatistical analysis required to analyze the enormous quantities of data obtained. Methods for validating proposed gene-expression profiles and those for improving trial designs represent some of the recommendations that have been suggested. This Review focuses on the limitations of microarray analysis that are continuously being recognized, and discusses how these limitations are being addressed.

Key Points

  • Gene-expression microarrays are tools that can be used to simultaneously measure the level of gene expression of all genes within a cell

  • Recent advances in technology and science are propelling microarray-based tests into the forefront of medicine

  • In the last 5 years, numerous gene-expression profiles predicting prognosis and response to specific therapies for several malignancies have been reported

  • Current limitations in the technology as well as in the biostatistical methods of analysis of the large quantities of data generated from microarray tests predispose the results to misinterpretation

  • Standardization of protocols and validation of current profiles will have to ensure that gene-expression profiles are reliable and reproducible, and therefore ready for clinical implementation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key considerations when performing gene-expression profiling using microarray analysis.
Figure 2: Gene-expression profiling using microarray analysis.

Similar content being viewed by others

References

  1. Simon R et al. (2002) Design of studies using DNA microarrays. Genet Epidemiol 23: 21–36

    Article  Google Scholar 

  2. Brazma A et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29: 365–371

    Article  CAS  Google Scholar 

  3. Schena M et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470

    Article  CAS  Google Scholar 

  4. Hughes TR et al. (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19: 342–347

    Article  CAS  Google Scholar 

  5. Lipshutz RJ et al. (1999) High density synthetic oligonucleotide arrays. Nat Genet 21: 20–24

    Article  CAS  Google Scholar 

  6. Bertucci F et al. (1999) Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum Mol Genet 8: 1715–1722

    Article  CAS  Google Scholar 

  7. Van de Goor TA (2005) A history of DNA microarrays. Pharm Discovery 5: 42–45

    CAS  Google Scholar 

  8. DeRisi J et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14: 457–460

    Article  CAS  Google Scholar 

  9. Gulmann C et al. (2006) Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. J Pathol 208: 595–606

    Article  CAS  Google Scholar 

  10. Lockhart DJ and Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–836

    Article  CAS  Google Scholar 

  11. Chen CN et al. (2005) Gene expression profile predicts patient survival of gastric cancer after surgical resection. J Clin Oncol 23: 7286–7295

    Article  CAS  Google Scholar 

  12. Lu J et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435: 834–838

    Article  CAS  Google Scholar 

  13. Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435: 745–746

    Article  CAS  Google Scholar 

  14. Alizadeh AA et al. (2001) Towards a novel classification of human malignancies based on gene expression patterns. J Pathol 195: 41–52

    Article  CAS  Google Scholar 

  15. Simon R et al. (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95: 14–18

    Article  CAS  Google Scholar 

  16. Knudsen S (2002) A Biologist's Guide to Analysis of DNA Microarray Data. New York: John Wiley & Sons

    Book  Google Scholar 

  17. Eisen MB et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868

    Article  CAS  Google Scholar 

  18. Chang HY et al. (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2: E7

    Article  Google Scholar 

  19. Chang HY et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102: 3738–3743

    Article  CAS  Google Scholar 

  20. Perou CM et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752

    Article  CAS  Google Scholar 

  21. van 't Veer LJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  CAS  Google Scholar 

  22. van de Vijver MJ et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009

    Article  CAS  Google Scholar 

  23. Nevins JR et al. (2003) Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet 12: R153–R157

    Article  CAS  Google Scholar 

  24. Van 't Veer LJ and De Jong D (2002) The microarray way to tailored cancer treatment. Nat Med 8: 13–14

    Article  CAS  Google Scholar 

  25. Miller LD et al. (2002) Optimal gene expression analysis by microarrays. Cancer Cell 2: 353–361

    Article  CAS  Google Scholar 

  26. Tu IP et al. (2004) A method for detecting and correcting feature misidentification on expression microarrays. BMC Genomics 5: 64

    Article  Google Scholar 

  27. Forster T et al. (2003) Experiments using microarray technology: limitations and standard operating procedures. J Endocrinol 178: 195–204

    Article  CAS  Google Scholar 

  28. Perez EA et al. (2004) Improving patient care through molecular diagnostics. Semin Oncol 31: 14–20

    Article  CAS  Google Scholar 

  29. Paik S et al. (2005) Technology insight: application of molecular techniques to formalin-fixed paraffin-embedded tissues from breast cancer. Nat Clin Pract Oncol 2: 246–254

    Article  CAS  Google Scholar 

  30. Brown I et al. (2003) From peas to “chips” - the new millennium of molecular biology: a primer for the surgeon. World J Surg Oncol 1: 21

    Article  Google Scholar 

  31. Ramaswamy S and Golub TR (2002) DNA microarrays in clinical oncology. J Clin Oncol 20: 1932–1941

    Article  CAS  Google Scholar 

  32. Russo G et al. (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22: 6497–6507

    Article  CAS  Google Scholar 

  33. Pusztai L and Hess KR (2004) Clinical trial design for microarray predictive marker discovery and assessment. Ann Oncol 15: 1731–1737

    Article  CAS  Google Scholar 

  34. Michiels S et al. (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365: 488–492

    Article  CAS  Google Scholar 

  35. Jornsten R et al. (2005) DNA microarray data imputation and significance analysis of differential expression. Bioinformatics 21: 4155–4161

    Article  Google Scholar 

  36. Ouyang M et al. (2004) Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20: 917–923

    Article  CAS  Google Scholar 

  37. Oba S et al. (2003) A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19: 2088–2096

    Article  CAS  Google Scholar 

  38. Ioannidis JP et al. (2003) Genetic associations in large versus small studies: an empirical assessment. Lancet 361: 567–571

    Article  Google Scholar 

  39. Simon R (2004) When is a genomic classifier ready for prime time? Nat Clin Pract Oncol 1: 4–5

    Article  Google Scholar 

  40. Ntzani EE and Ioannidis JP (2003) Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 362: 1439–1444

    Article  CAS  Google Scholar 

  41. Paik S et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826

    Article  CAS  Google Scholar 

  42. Wang Y et al. (2005) Gene expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679

    Article  CAS  Google Scholar 

  43. Schaner ME et al. (2003) Gene expression patterns in ovarian carcinomas. Mol Biol Cell 14: 4376–4386

    Article  CAS  Google Scholar 

  44. Eschrich S et al. (2005) Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 23: 3526–3535

    Article  CAS  Google Scholar 

  45. Yeoh EJ et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143

    Article  CAS  Google Scholar 

  46. Ross DT et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24: 227–235

    Article  CAS  Google Scholar 

  47. Alizadeh AA et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511

    Article  CAS  Google Scholar 

  48. Lapointe J et al. (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811–816

    Article  CAS  Google Scholar 

  49. Yu YP et al. (2004) Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22: 2790–2799

    Article  CAS  Google Scholar 

  50. Garber ME et al. (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98: 13784–13789

    Article  CAS  Google Scholar 

  51. Beer DG et al. (2002) Gene expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8: 816–824

    Article  CAS  Google Scholar 

  52. Buckhaults P et al. (2003) Identifying tumor origin using a gene expression-based classification map. Cancer Res 63: 4144–4149

    CAS  PubMed  Google Scholar 

  53. Bittner M et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406: 536–540

    Article  CAS  Google Scholar 

  54. Ebert BL and Golub TR (2004) Genomic approaches to hematologic malignancies. Blood 104: 923–932

    Article  CAS  Google Scholar 

  55. Armstrong SA et al. (2003) Inhibition of FLT3 in MLL: validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3: 173–183

    Article  CAS  Google Scholar 

  56. Lossos IS et al. (2003) HGAL is a novel interleukin-4-inducible gene that strongly predicts survival in diffuse large B-cell lymphoma. Blood 101: 433–440

    Article  CAS  Google Scholar 

  57. Lossos IS et al. (2001) Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood 98: 945–951

    Article  CAS  Google Scholar 

  58. Lossos IS et al. (2004) Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350: 1828–1837

    Article  CAS  Google Scholar 

  59. Etzioni R et al. (1998) Asymptomatic incidence and duration of prostate cancer. Am J Epidemiol 148: 775–785

    Article  CAS  Google Scholar 

  60. Kan T et al. (2004) Prediction of lymph node metastasis with use of artificial neural networks based on gene expression profiles in esophageal squamous cell carcinoma. Ann Surg Oncol 11: 1070–1078

    Article  Google Scholar 

  61. Tamoto E et al. (2004) Gene expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin Cancer Res 10: 3629–3638

    Article  CAS  Google Scholar 

  62. Pawitan Y et al. (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7: R953–R964

    Article  CAS  Google Scholar 

  63. Cronin M et al. (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164: 35–42

    Article  CAS  Google Scholar 

  64. Esteva FJ et al. (2005) Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin Cancer Res 11: 3315–3319

    Article  CAS  Google Scholar 

  65. Ball CA et al. (2002) A guide to microarray experiments-an open letter to the scientific journals. Lancet 360: 1019

    Article  Google Scholar 

  66. Golub TR et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537

    Article  CAS  Google Scholar 

  67. McShane LM et al. (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Nat Clin Pract Oncol 2: 416–422

    Article  CAS  Google Scholar 

  68. National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov]

Download references

Acknowledgements

We would like to thank L Wessel for advice and critical reading of the manuscript. We thank R Kerkhoven for his artwork for Figure 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J van de Vijver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullah-Sayani, A., Bueno-de-Mesquita, J. & van de Vijver, M. Technology Insight: tuning into the genetic orchestra using microarrays—limitations of DNA microarrays in clinical practice. Nat Rev Clin Oncol 3, 501–516 (2006). https://doi.org/10.1038/ncponc0587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing