Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

β-Catenin in the race to fracture repair: in it to Wnt

Abstract

The Wnt/β-catenin pathway regulates multiple biological events during embryonic development, including bone formation. Fracture repair recapitulates some of the processes of normal bone development, such as the formation of bone from a cartilaginous template, and many cell-signaling pathways that underlie bone development are activated during the repair process. The Wnt/β-catenin signaling pathway is activated during fracture repair, and dysregulation of this pathway alters the normal bone-healing response. In early pluripotent mesenchymal stem cells, Wnt/β-catenin signaling needs to be precisely regulated to facilitate the differentiation of osteoblasts; by contrast, β-catenin is not needed for chondrocyte differentiation. Once mesenchymal stem cells are committed to the osteoblast lineage, activation of Wnt/β-catenin signaling enhances bone formation. This activity suggests that the Wnt/β-catenin pathway is a therapeutic target during bone repair. Indeed, treatments that activate Wnt/β-catenin signaling, such as lithium, increase bone density and also enhance healing.

Key Points

  • Wnt/β-catenin signaling has a major role in embryonic bone development by controlling the differentiation of pluripotent mesenchymal stem cells into osteoblasts

  • Activation of the Wnt/β-catenin pathway during embryonic bone development increases bone formation

  • Wnt/β-catenin signaling is activated during fracture repair

  • Removal of β-catenin prevents osteochondral progenitor cells from differentiating into osteoblasts

  • Activation of β-catenin by pharmacologic agents such as lithium can enhance fracture repair and improve patient outcome

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Wnt/β-catenin signaling pathway.
Figure 2: The role of β-catenin in different cell types during fracture repair.

Similar content being viewed by others

References

  1. van Staa TP et al. (2001) Epidemiology of fractures in England and Wales. Bone 29: 517–522

    CAS  PubMed  Google Scholar 

  2. Praemer A et al. (1992) Musculoskeletal conditions in the United States. Park Ridge, IL: American Academy of Orthopaedic Surgeons

    Google Scholar 

  3. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423: 332–336

    Article  CAS  Google Scholar 

  4. Olsen BR et al. (2000) Bone development. Annu Rev Cell Dev Biol 16: 191–220

    Article  CAS  Google Scholar 

  5. Hall BK and Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22: 138–147

    Article  CAS  Google Scholar 

  6. Erlebacher A et al. (1995) Toward a molecular understanding of skeletal development. Cell 80: 371–378

    Article  CAS  Google Scholar 

  7. Alini M (1996) A novel angiogenic molecule produced at the time of chondrocyte hypertrophy during endochondral bone formation. Dev Biol 176: 124–132

    Article  CAS  Google Scholar 

  8. Brunet LJ et al. (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457

    Article  CAS  Google Scholar 

  9. Minina E et al. (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3: 439–449

    Article  CAS  Google Scholar 

  10. Adams SL et al. (2007) Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation. J Cell Physiol 213: 635–641

    Article  CAS  Google Scholar 

  11. Mackie EJ et al. (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40: 46–62

    Article  CAS  Google Scholar 

  12. Marie PJ (2003) Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316: 23–32

    Article  CAS  Google Scholar 

  13. Maes C et al. (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111: 61–73

    Article  CAS  Google Scholar 

  14. Hu H et al. (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132: 49–60

    Article  CAS  Google Scholar 

  15. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 335 (Suppl): S7–S21

    Article  Google Scholar 

  16. Carlevaro M et al. (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113: 59–69

    CAS  PubMed  Google Scholar 

  17. Kon T et al. (2001) Expression of osteoprotegerin, receptor activator of NF-κB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16: 1004–1014

    Article  CAS  Google Scholar 

  18. Probst A and Spiegel HU (1997) Cellular mechanisms of bone repair. J Invest Surg 10: 77–86

    Article  CAS  Google Scholar 

  19. Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200: 165–170

    Article  CAS  Google Scholar 

  20. Yoo JU and Johnstone B (1998) The role of osteochondral progenitor cells in fracture repair. Clin Orthop Relat Res 355 (Suppl): S73–S81

    Article  Google Scholar 

  21. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B: 150–162

    Article  CAS  Google Scholar 

  22. Young RW (1962) Cell proliferation and specialization during endochondral osteogenesis in young rats. J Cell Biol 14: 357–370

    Article  CAS  Google Scholar 

  23. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127: 469–480

    Article  CAS  Google Scholar 

  24. Johnson ML and Kamel MA (2007) The Wnt signaling pathway and bone metabolism. Curr Opin Rheumatol 19: 376–382

    Article  CAS  Google Scholar 

  25. Wallingford M and Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132: 4421–4436

    Article  CAS  Google Scholar 

  26. Moon RT et al. (2002) The promise and perils of Wnt signaling through β-catenin. Science 296: 1644–1646

    Article  CAS  Google Scholar 

  27. Kato M et al. (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157: 303–314

    Article  CAS  Google Scholar 

  28. Akiyama T (2002) Wnt/β-catenin signaling. Cytokine Growth Factor Rev 11: 273–282

    Article  Google Scholar 

  29. Brault V et al. (2001) Inactivation of the β-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128: 1253–1264

    CAS  PubMed  Google Scholar 

  30. Hartmann C and Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127: 3141–3159

    CAS  PubMed  Google Scholar 

  31. Parr BA and McMahon AP (1995) Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature 374: 350–353

    Article  CAS  Google Scholar 

  32. Church V et al. (2002) Wnt regulation of chondrocyte differentiation. J Cell Sci 115: 4809–4818

    Article  CAS  Google Scholar 

  33. Tufan AC and Tuan RS (2001) Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin-related functions. FASEB J 15: 1436–1438

    Article  CAS  Google Scholar 

  34. Yamaguchi TP et al. (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126: 1211–1223

    CAS  PubMed  Google Scholar 

  35. Yang Y et al. (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130: 1003–1015

    Article  CAS  Google Scholar 

  36. Brugmann SA et al. (2007) Wnt signaling mediates regional specification in the vertebrate face. Development 134: 3283–3295

    Article  CAS  Google Scholar 

  37. Hill TP et al. (2005) Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8: 727–738

    Article  CAS  Google Scholar 

  38. Mbalaviele G et al. (2005) β-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem 94: 403–418

    Article  CAS  Google Scholar 

  39. Rawadi G et al. (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18: 1842–1853

    Article  CAS  Google Scholar 

  40. Chen Y et al. (2007) β-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 282: 526–533

    Article  CAS  Google Scholar 

  41. Zhong N et al. (2006) Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 39: 5–16

    Article  CAS  Google Scholar 

  42. Rodda SJ and McMahon AP (2006) Distinct roles of Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133: 3231–3244

    Article  CAS  Google Scholar 

  43. Kakar S et al. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 22: 1903–1912

    Article  CAS  Google Scholar 

  44. Kim JB et al. (2007) Bone regeneration is regulated by Wnt signaling. J Bone Miner Res 22: 1913–1923

    Article  CAS  Google Scholar 

  45. Hadjiargyrou M et al. (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277: 30177–30182

    Article  CAS  Google Scholar 

  46. Chen Y et al. (2007) β-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4: 1216–1229

    Article  CAS  Google Scholar 

  47. Kang S et al. (2007) Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ. J Biol Chem 282: 14515–14524

    Article  CAS  Google Scholar 

  48. Termaat MF et al. (2005) Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am 87: 1367–1378

    CAS  PubMed  Google Scholar 

  49. Gersbach CA et al. (2007) In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts. J Cell Biochem 100: 1324–1336

    Article  CAS  Google Scholar 

  50. Herpin A and Cunningham C (2007) Cross-talk between the bone morphogenetic protein pathway and other major signaling pathways results in tightly regulated cell-specific outcomes. FEBS J 274: 2977–2985

    Article  CAS  Google Scholar 

  51. Chen D et al. (2004) Bone morphogenetic proteins. Growth Factors 22: 233–241

    Article  CAS  Google Scholar 

  52. Clément-Lacroix P et al. (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 102: 17406–17411

    Article  Google Scholar 

  53. Noble W et al. (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102: 6990–6995

    Article  CAS  Google Scholar 

  54. Zhang F et al. (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. J Biol Chem 278: 33067–33077

    Article  CAS  Google Scholar 

  55. Vestergaard P et al. (2005) Reduced relative risk of fractures among users of lithium. Calcif Tissue Int 77: 1–8

    Article  CAS  Google Scholar 

  56. Diarra D et al. (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13: 156–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A Alman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silkstone, D., Hong, H. & Alman, B. β-Catenin in the race to fracture repair: in it to Wnt. Nat Rev Rheumatol 4, 413–419 (2008). https://doi.org/10.1038/ncprheum0838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing