Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Critical function of Prdm14 for the establishment of the germ cell lineage in mice

Abstract

Specification of germ cell fate is fundamental in development and heredity. Recent evidence indicates that in mice, specification of primordial germ cells (PGCs), the common source of both oocytes and spermatozoa, occurs through the integration of three key events: repression of the somatic program1, reacquisition of potential pluripotency2,3 and ensuing genome-wide epigenetic reprogramming4,5. Here we provide genetic evidence that Prdm14, a PR domain–containing transcriptional regulator with exclusive expression in the germ cell lineage and pluripotent cell lines, is critical in two of these events, the reacquisition of potential pluripotency and successful epigenetic reprogramming. In Prdm14 mutants, the failure of these two events manifests even in the presence of Prdm1 (also known as Blimp1), a key transcriptional regulator for PGC specification6,7. Our combined evidence demonstrates that Prdm14 defines a previously unknown genetic pathway, initiating independently from Prdm1, for ensuring the launching of the mammalian germ cell lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Prdm14 in germ cell development.
Figure 2: Function of Prdm14 in germ cell development.
Figure 3: Prdm14 is critical in regaining a genetic pathway for potential pluripotency in the germ cell lineage.
Figure 4: Prdm14-deficient cells show stalled epigenetic reprogramming and fail to form EG cell–like colonies in culture.
Figure 5: Genetic interactions of Prdm14 with Prdm1, Bmp4 and Smad1.
Figure 6: A conceptual model for the specification of germ cell fate in mice.

Similar content being viewed by others

References

  1. Saitou, M., Barton, S.C. & Surani, M.A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Matsui, Y., Zsebo, K. & Hogan, B.L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y. & Saitou, M. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol. Reprod. 75, 705–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278, 440–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Seki, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134, 2627–2638 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Vincent, S.D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Seydoux, G. & Braun, R.E. Pathway to totipotency: lessons from germ cells. Cell 127, 891–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ginsburg, M., Snow, M.H. & McLaren, A. Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528 (1990).

    CAS  PubMed  Google Scholar 

  10. Sato, M. et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev. 113, 91–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat. Genet. 37, 899–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Nishikawa, N. et al. Gene amplification and overexpression of PRDM14 in breast cancers. Cancer Res. 67, 9649–9657 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Assou, S. et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25, 961–973 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Avilion, A.A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  Google Scholar 

  16. Youngren, K.K. et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435, 360–364 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernstein, A. et al. The mouse W/c-kit locus. Ciba. Found. Symp. 148, 158–166 (1990) discussion 148, 166–172 (1990).

    CAS  PubMed  Google Scholar 

  18. Tsuda, M. et al. Conserved role of nanos proteins in germ cell development. Science 301, 1239–1241 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev. 19, 815–826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saitou, M., Payer, B., O'Carroll, D., Ohinata, Y. & Surani, M.A. Blimp1 and the emergence of the germ line during development in the mouse. Cell Cycle 4, 1736–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lawson, K.A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Downs, K.M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993).

    CAS  PubMed  Google Scholar 

  23. Kurimoto, K. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34, e42 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kurimoto, K., Yabuta, Y., Ohinata, Y. & Saitou, M. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2, 739–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Saitou, M. et al. Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur. J. Cell Biol. 73, 222–231 (1997).

    CAS  PubMed  Google Scholar 

  26. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi, K. et al. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech. Dev. 118, 99–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Cox, W.G. & Singer, V.L. A high-resolution, fluorescence-based method for localization of endogenous alkaline phosphatase activity. J. Histochem. Cytochem. 47, 1443–1456 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Maruyama, M., Ichisaka, T., Nakagawa, M. & Yamanaka, S. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. J. Biol. Chem. 280, 24371–24379 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Kimura, T. et al. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130, 1691–1700 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Miyawaki (RIKEN) for the Venus plasmid, S. Yamanaka (Kyoto University) for the antibody to Sox2, Y. Shinkai and M. Tachibana (Kyoto University) for the antibody to GLP, A. Tarakhovsky (Rockefeller University) and D. O'Carroll (EMBL) for the Prdm1-knockout mice, B. Hogan (Duke University) and K. Lawson (University of Edinburgh) for the Bmp4-knockout mice and K. Hayashi (University of Cambridge) for the Smad1-knockout mice. We thank D. Sipp for his help in manuscript preparation. Y.S., K.K. and Y.O. are fellows in the Special Postdoctoral Researchers Program of RIKEN. This study was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by a PRESTO project grant from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Contributions

M. Yamaji, Y.S. and M. Saitou designed this study. M. Yamaji, Y.S. and K.K. performed phenotype assessment. M. Saitou, Y.Y. and Y.O. helped phenotype assessment. M. Yuasa, M. Shigeta and K.Y. helped generation and propagation of the mouse strains. M. Saitou wrote this paper.

Corresponding author

Correspondence to Mitinori Saitou.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–7 (PDF 1159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaji, M., Seki, Y., Kurimoto, K. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40, 1016–1022 (2008). https://doi.org/10.1038/ng.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing