Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis

An Erratum to this article was published on 01 February 2008

This article has been updated

Abstract

Both PU.1 (also called SFPI1), an Ets-family transcription factor, and AML1 (also called RUNX1), a DNA-binding subunit of the CBF transcription factor family, are crucial for the generation of all hematopoietic lineages, and both act as tumor suppressors in leukemia. An upstream regulatory element (URE) of PU.1 has both enhancer and repressor activity and tightly regulates PU.1 expression. Here we show that AML1 binds to functionally important sites within the PU.1 upstream regulatory element and regulates PU.1 expression at both embryonic and adult stages of development. Analysis of mice carrying conditional AML1 knockout alleles and knock-in mice carrying mutations in all three AML1 sites of the URE proximal region demonstrated that AML1 regulates PU.1 both positively and negatively in a lineage dependent manner. Dysregulation of PU.1 expression contributed to each of the phenotypes observed in these mice, and restoration of proper PU.1 expression rescued or partially rescued each phenotype. Thus, our data demonstrate that PU.1 is a major downstream target gene of AML1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AML1 regulates PU.1 through the −14 kb PU.1 URE.
Figure 2: AML1 regulates PU.1 both in embryonic and adult hematopoiesis.
Figure 3: Partial rescue of the AML1 knockout platelet and T-cell phenotypes by adjustment of the dosages of PU.1.
Figure 4: Altering the dosage of PU.1 enhances granulocytic and B-cell phenotypes in AML1 conditional knockout mice.
Figure 5: Restoration of PU.1 levels after retroviral transduction partially rescues the granulocytic and B-cell phenotypes in AML1 conditional knockout mice.
Figure 6: Genetic interaction of AML1 and PU.1 in B cells and myeloid cells.
Figure 7: Phenotypes of mice harboring targeted mutations of all three AML1 sites in the URE.

Similar content being viewed by others

Change history

  • 23 January 2008

    In the version of this article initially published, the affiliation for Stephen D Nimer was incorrect. Dr. Nimer is affiliated with the Division of Hematologic Oncology, Memorial Sloan-Kettering Cancer Center, New York, and not with Kyoto Prefectural University of Medicine. The error has been corrected in the PDF version of the article.

References

  1. Canon, J. & Banerjee, U. In vivo analysis of a developmental circuit for direct transcriptional activation and repression in the same cell by a Runx protein. Genes Dev. 17, 838–843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flores, G.V. et al. Combinatorial signaling in the specification of unique cell fates. Cell 103, 75–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Flores, G.V., Daga, A., Kalhor, H.R. & Banerjee, U. Lozenge is expressed in pluripotent precursor cells and patterns multiple cell types in the Drosophila eye through the control of cell-specific transcription factors. Development 125, 3681–3687 (1998).

    CAS  PubMed  Google Scholar 

  4. Tenen, D.G. Disruption of differentiation in human cancer: AML shows the way. Nat. Rev. Cancer 3, 89–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Koschmieder, S., Rosenbauer, F., Steidl, U., Owens, B.M. & Tenen, D.G. Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int. J. Hematol. 81, 368–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, J. & Emerson, S.G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295–3313 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Osato, M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284–4296 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Song, W.J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Osato, M. et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93, 1817–1824 (1999).

    CAS  PubMed  Google Scholar 

  10. Harada, H. et al. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103, 2316–2324 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lorsbach, R.B. et al. Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103, 2522–2529 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. North, T.E., Stacy, T., Matheny, C.J., Speck, N.A. & de Bruijn, M.F. Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells 22, 158–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Ichikawa, M. et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Growney, J.D. et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106, 494–504 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Putz, G., Rosner, A., Nuesslein, I., Schmitz, N. & Buchholz, F. AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene 25, 929–939 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Peterson, L.F. & Zhang, D.E. The 8;21 translocation in leukemogenesis. Oncogene 23, 4255–4262 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. de Bruijn, M.F. & Speck, N.A. Core-binding factors in hematopoiesis and immune function. Oncogene 23, 4238–4248 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 37, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Canon, J. & Banerjee, U. Runt and Lozenge function in Drosophila development. Semin. Cell Dev. Biol. 11, 327–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rosenbauer, F. et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet. 38, 27–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 36, 624–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Nutt, S.L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suraweera, N. et al. Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene 24, 3678–3683 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Walter, M.J. et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc. Natl. Acad. Sci. USA 102, 12513–12518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du, Y., Spence, S.E., Jenkins, N.A. & Copeland, N.G. Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 106, 2498–2505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cook, W.D. et al. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 104, 3437–3444 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H. et al. PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11, 1549–1560 (1995).

    CAS  PubMed  Google Scholar 

  30. Li, Y. et al. Regulation of the PU.1 gene by distal elements. Blood 98, 2958–2965 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Okuno, Y. et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol. Cell. Biol. 25, 2832–2845 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okada, H. et al. AML1(−/−) embryos do not express certain hematopoiesis-related gene transcripts including those of the PU.1 gene. Oncogene 17, 2287–2293 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, Z., HU, M. & Shivdasani, R.A. Expression analysis of primary mouse megakaryocyte differentiation and its application in identifying stage-specific molecular markers and a novel transcriptional target of NF-E2. Blood 109, 1451–1459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeKoter, R.P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, D.E. et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell. Biol. 16, 1231–1240 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3, 137–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Moreau-Gachelin, F., Tavitian, A. & Tambourin, P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331, 277–280 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Moreau-Gachelin, F. et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol. Cell. Biol. 16, 2453–2463 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson, M.K., Weiss, A.H., Hernandez-Hoyos, G., Dionne, C.J. & Rothenberg, E.V. Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Vangala, R.K. et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101, 270–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y. et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 9, 249–260 (2006).

    Article  PubMed  Google Scholar 

  44. Huang, G. et al. Molecular basis for a dominant inactivation of RUNX1/AML1 by the leukemogenic inversion 16 chimera. Blood 103, 3200–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Z. et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat. Genet. 37, 613–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Villeval, J.L. et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 90, 4369–4383 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Singh for the MIGR1-PU.1 and MIGR1-PU.1-ER retroviral constructs, and M. Osato and members of the Tenen laboratory for critical discussions and suggestions. This work was supported by US National Institutes of Health grants CA41456 and CA66996 (to D.G.T.) and DK52208 (to S.D.N. and D.G.T.), Leukemia Lymphoma Society SCOR grants (to S.D.N. and D.G.T.) and Deutsche Forschungsgemeinschaft grant KO2155/1-1 (to S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G Tenen.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1; Supplementary Tables 1–2 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Zhang, P., Hirai, H. et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet 40, 51–60 (2008). https://doi.org/10.1038/ng.2007.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2007.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing