Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large conserved domains of low DNA methylation maintained by Dnmt3a

Abstract

Gains and losses in DNA methylation are prominent features of mammalian cell types. To gain insight into the mechanisms that promote shifts in DNA methylation and contribute to changes in cell fate, including malignant transformation, we performed genome-wide mapping of 5-methylcytosine and 5-hydroxymethylcytosine in purified mouse hematopoietic stem cells. We discovered extended regions of low methylation (canyons) that span conserved domains frequently containing transcription factors and are distinct from CpG islands and shores. About half of the genes in these methylation canyons are coated with repressive histone marks, whereas the remainder are covered by activating histone marks and are highly expressed in hematopoietic stem cells (HSCs). Canyon borders are demarked by 5-hydroxymethylcytosine and become eroded in the absence of DNA methyltransferase 3a (Dnmt3a). Genes dysregulated in human leukemias are enriched for canyon-associated genes. The new epigenetic landscape we describe may provide a mechanism for the regulation of hematopoiesis and may contribute to leukemia development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large undermethylated canyons identified by WGBS.
Figure 2: Histone modification and expression of canyon-associated genes.
Figure 3: Erosion of canyon borders in Dnmt3a-null HSCs.
Figure 4: Histone and 5hmC distribution on canyons and cUMRs.
Figure 5: Aberrant expression of canyon-associated genes in hematologic malignancies.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Bird, A., Taggart, M., Frommer, M., Miller, O.J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ley, T.J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yan, X.J. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet. 43, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  6. Abdel-Wahab, O. et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114, 144–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ziller, M.J. et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 7, e1002389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hodges, E. et al. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol. Cell 44, 17–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Lowe, C.B., Bejerano, G. & Haussler, D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl. Acad. Sci. USA 104, 8005–8010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hendrix, D.A., Hong, J.W., Zeitlinger, J., Rokhsar, D.S. & Levine, M.S. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 105, 7762–7767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellen, H.J. et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akalin, A. et al. Transcriptional features of genomic regulatory blocks. Genome Biol. 10, R38 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kikuta, H. et al. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res. 17, 545–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wilson, N.K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Coolen, M.W. et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat. Cell Biol. 12, 235–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bert, S.A. et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23, 9–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Patel, J.P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Challen, G.A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2012).

    Article  CAS  Google Scholar 

  25. Pastor, W.A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue, A. & Zhang, Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pastor, W.A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Booth, M.J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Roller, A. et al. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 27, 1573–1578 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long, H.K. et al. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. eLife 2, e00348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S. & Mulligan, R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Mayle, A., Luo, M., Jeong, M. & Goodell, M.A. Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 83, 27–37 (2013).

    Article  PubMed  Google Scholar 

  36. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Y., Pastor, W.A., Zepeda-Martinez, J.A. & Rao, A. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine. Nat. Protoc. 7, 1897–1908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krueger, F. & Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dahl, J.A. & Collas, P. A rapid micro chromatin immunoprecipitation assay (microChIP). Nat. Protoc. 3, 1032–1045 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Xi, Y. & Li, W. BSMAP: whole genome Bisulfite Sequence MAPping program. BMC Bioinformatics 10, 232 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin, X. et al. BSeQC: quality control of bisulfite sequencing experiments. Bioinformatics 10.1093/bioinformatics/btt548 (11 October 2013).

  42. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    CAS  PubMed  Google Scholar 

  44. He, Y.-F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  46. Kuhn, A., Luthi-Carter, R. & Delorenzi, M. Cross-species and cross-platform gene expression studies with the Bioconductor-compliant R package 'annotationTools'. BMC Bioinformatics 9, 26 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simon, R. et al. Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3, 11–17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Chen, J.P. Issa, J. Gilbert and members of the Goodell laboratory for helpful discussions. This work was supported by US National Institutes of Health (NIH) grants AG036562, CA126752, DK092883, CA125123, DK084259 and AI07495, the Ellison Medical Foundation, Cancer Prevention Research Institute of Texas (CPRIT) grant RP110028 and the Samuel Waxman Foundation (M.A.G.): by CPRIT RP110471, NIH grant RO1HG007538 and DOD PC094421 (W.L.); and by grants CA151535 and CIRM RM1-01729 and Leukemia and Lymphoma Society award 6187-12 (A.R.). Y.H. and M.K. are supported by Leukemia and Lymphoma Society fellowships.

Author information

Authors and Affiliations

Authors

Contributions

M.J., M.L., G.A.C., X.Z., Y.H., M.K., H.W., L.Y. and R.C. designed and performed experiments. M.J., D.S., M.L., G.A.C., B.R., L.C., S.-B.K., R.H., L.A.G., A.R., G.J.D., W.L. and M.A.G. analyzed data. M.J., D.S., M.L., G.A.C., B.R., J.-S.L., B.G., P.G., L.A.G., G.J.D., A.R., W.L. and M.A.G. wrote and edited the manuscript.

Corresponding authors

Correspondence to Wei Li or Margaret A Goodell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 2094 kb)

Supplementary Table 1

Whole-genome sequencing statistics (XLSX 12 kb)

Supplementary Table 2

UMRs in WT HSCs (XLSX 3111 kb)

Supplementary Table 3

UMRs in HOX genes (XLSX 42 kb)

Supplementary Table 4

UMRs in ESCs (XLSX 1819 kb)

Supplementary Table 5

Canyons versus UMRs (XLSX 13 kb)

Supplementary Table 6

WT versus Dnmt3a KO HSC UMRs (XLSX 9021 kb)

Supplementary Table 7

5hmC sites in WT and Dnmt3a KO (XLSX 21506 kb)

Supplementary Table 8

oxBS sequencing (XLSX 21 kb)

Supplementary Table 9

Summary of genes overlapping leukemia Oncomine signatures (XLSX 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, M., Sun, D., Luo, M. et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet 46, 17–23 (2014). https://doi.org/10.1038/ng.2836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing