Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

Abstract

Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding α-catenin 1) in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice demonstrated increased cell shedding and the presence of large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, indicates that CTNNA1 is involved in maintaining RPE integrity and suggests that other components that participate in intercellular adhesion may be implicated in macular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CTNNA1 mutations in three families with butterfly-shaped pigment dystrophy.
Figure 2: Retinal images of individuals with butterfly-shaped pigment dystrophy.
Figure 3: Live retinal imaging of mice homozygous for Ctnna1tvrm5.
Figure 4: ERG recordings of Ctnna1tvrm5 mice.
Figure 5: Light micrographs of the Ctnna1tvrm5 posterior eye.
Figure 6: RPE cell dysmorphology.
Figure 7: Human CTNNA1 structural model showing the location of predicted substitutions in the variants described.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Boon, C.J. et al. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog. Retin. Eye Res. 27, 213–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal, A. in Gass' Atlas of Macular Diseases 5th edn. 254–266 (Elsevier, 2012).

  3. Deutman, A.F., van Blommestein, J.D., Henkes, H.E., Waardenburg, P.J. & Solleveld-van Driest, E. Butterfly-shaped pigment dystrophy of the fovea. Arch. Ophthalmol. 83, 558–569 (1970).

    Article  CAS  PubMed  Google Scholar 

  4. Fossarello, M. et al. Deletion in the peripherin/RDS gene in two unrelated Sardinian families with autosomal dominant butterfly-shaped macular dystrophy. Arch. Ophthalmol. 114, 448–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Pinckers, A. Patterned dystrophies of the retinal pigment epithelium. A review. Ophthalmic Paediatr. Genet. 9, 77–114 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Prensky, J.G. & Bresnick, G.H. Butterfly-shaped macular dystrophy in four generations. Arch. Ophthalmol. 101, 1198–1203 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Nichols, B.E. et al. Butterfly-shaped pigment dystrophy of the fovea caused by a point mutation in codon 167 of the RDS gene. Nat. Genet. 3, 202–207 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. van Lith-Verhoeven, J.J., Cremers, F.P., van den Helm, B., Hoyng, C.B. & Deutman, A.F. Genetic heterogeneity of butterfly-shaped pigment dystrophy of the fovea. Mol. Vis. 9, 138–143 (2003).

    CAS  PubMed  Google Scholar 

  9. Marano, F., Deutman, A.F. & Aandekerk, A.L. Butterfly-shaped pigment dystrophy of the fovea associated with subretinal neovascularization. Graefes Arch. Clin. Exp. Ophthalmol. 234, 270–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Grover, S., Fishman, G.A. & Stone, E.M. Atypical presentation of pattern dystrophy in two families with peripherin/RDS mutations. Ophthalmology 109, 1110–1117 (2002).

    Article  PubMed  Google Scholar 

  11. Nichols, B.E. et al. A 2 base pair deletion in the RDS gene associated with butterfly-shaped pigment dystrophy of the fovea. Hum. Mol. Genet. 2, 1347 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Richards, S.C. & Creel, D.J. Pattern dystrophy and retinitis pigmentosa caused by a peripherin/RDS mutation. Retina 15, 68–72 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Vaclavik, V., Tran, H.V., Gaillard, M.C., Schorderet, D.F. & Munier, F.L. Pattern dystrophy with high intrafamilial variability associated with Y141C mutation in the peripherin/RDS gene and successful treatment of subfoveal CNV related to multifocal pattern type with anti-VEGF (ranibizumab) intravitreal injections. Retina 32, 1942–1949 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Z. et al. A novel RDS/peripherin gene mutation associated with diverse macular phenotypes. Ophthalmic Genet. 25, 133–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, K., Garibaldi, D.C., Li, Y., Green, W.R. & Zack, D.J. Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathological report. Arch. Ophthalmol. 120, 485–490 (2002).

    Article  PubMed  Google Scholar 

  16. den Hollander, A.I. et al. Identification of novel locus for autosomal dominant butterfly shaped macular dystrophy on 5q21.2-q33.2. J. Med. Genet. 41, 699–702 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, J., Peachey, N.S. & Marmorstein, A.D. Light-evoked responses of the mouse retinal pigment epithelium. J. Neurophysiol. 91, 1134–1142 (2004).

    Article  PubMed  Google Scholar 

  18. Vaughan, D.K. & Fisher, S.K. The distribution of F-actin in cells isolated from vertebrate retinas. Exp. Eye Res. 44, 393–406 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Kobielak, A. & Fuchs, E. α-catenin: at the junction of intercellular adhesion and actin dynamics. Nat. Rev. Mol. Cell Biol. 5, 614–625 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leckband, D.E. & de Rooij, J. Cadherin adhesion and mechanotransduction. Annu. Rev. Cell Dev. Biol. 30, 291–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Sandig, M. & Kalnins, V.I. Subunits in zonulae adhaerentes and striations in the associated circumferential microfilament bundles in chicken retinal pigment epithelial cells in situ. Exp. Cell Res. 175, 1–14 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Rangarajan, E.S. & Izard, T. Dimer asymmetry defines α-catenin interactions. Nat. Struct. Mol. Biol. 20, 188–193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Provost, E. & Rimm, D.L. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr. Opin. Cell Biol. 11, 567–572 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Peng, X., Maiers, J.L., Choudhury, D., Craig, S.W. & DeMali, K.A. α-catenin uses a novel mechanism to activate vinculin. J. Biol. Chem. 287, 7728–7737 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huveneers, S. et al. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J. Cell Biol. 196, 641–652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sprecher, E. et al. Hypotrichosis with juvenile macular dystrophy is caused by a mutation in CDH3, encoding P-cadherin. Nat. Genet. 29, 134–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Mason, J.O. III. & Patel, S.A. A case of hypotrichosis with juvenile macular dystrophy. Retin. Cases Brief Rep. 9, 164–167 (2015).

    Article  PubMed  Google Scholar 

  28. Paffenholz, R., Kuhn, C., Grund, C., Stehr, S. & Franke, W.W. The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp. Cell Res. 250, 452–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, S., Lewis, B., Moran, A. & Xie, T. Cadherin-mediated cell adhesion is critical for the closing of the mouse optic fissure. PLoS One 7, e51705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Campbell, M. et al. Aberrant retinal tight junction and adherens junction protein expression in an animal model of autosomal dominant retinitis pigmentosa: the Rho−/− mouse. Exp. Eye Res. 83, 484–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Torres, M. et al. An α-E-catenin gene trap mutation defines its function in preimplantation development. Proc. Natl. Acad. Sci. USA 94, 901–906 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams, M.A., Craig, D., Passmore, P. & Silvestri, G. Retinal drusen: harbingers of age, safe havens for trouble. Age Ageing 38, 648–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hammond, C.J. et al. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology 109, 730–736 (2002).

    Article  PubMed  Google Scholar 

  35. Klein, R. et al. Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114, 253–262 (2007).

    Article  PubMed  Google Scholar 

  36. Klein, R., Klein, B.E., Tomany, S.C., Meuer, S.M. & Huang, G.H. Ten-year incidence and progression of age-related maculopathy: The Beaver Dam Eye Study. Ophthalmology 109, 1767–1779 (2002).

    Article  PubMed  Google Scholar 

  37. Rudolf, M. et al. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest. Ophthalmol. Vis. Sci. 49, 1200–1209 (2008).

    Article  PubMed  Google Scholar 

  38. Sohn, E.H. et al. Comparison of drusen and modifying genes in autosomal dominant radial drusen and age-related macular degeneration. Retina 35, 48–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nagai, H. & Kalnins, V.I. Normally occurring loss of single cells and repair of resulting defects in retinal pigment epithelium in situ. Exp. Eye Res. 62, 55–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Longbottom, R. et al. Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proc. Natl. Acad. Sci. USA 106, 18728–18733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xia, H., Krebs, M.P., Kaushal, S. & Scott, E.W. Enhanced retinal pigment epithelium regeneration after injury in MRL/MpJ mice. Exp. Eye Res. 93, 862–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rakoczy, P.E. et al. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am. J. Pathol. 161, 1515–1524 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarks, J.P., Sarks, S.H. & Killingsworth, M.C. Evolution of geographic atrophy of the retinal pigment epithelium. Eye (Lond.) 2, 552–577 (1988).

    Article  Google Scholar 

  44. Hawes, N.L. et al. Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest. Ophthalmol. Vis. Sci. 41, 3149–3157 (2000).

    CAS  PubMed  Google Scholar 

  45. Fogerty, J. & Besharse, J.C. 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy. Invest. Ophthalmol. Vis. Sci. 52, 7256–7266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ach, T. et al. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 56, 3242–3252 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zanzottera, E.C., Messinger, J.D., Ach, T., Smith, R.T. & Curcio, C.A. Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 56, 3269–3278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patil, H. et al. Selective impairment of a subset of Ran-GTP–binding domains of Ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation. J. Biol. Chem. 289, 29767–29789 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, J. et al. α-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ. Res. 116, 70–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stepniak, E., Radice, G.L. & Vasioukhin, V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb. Perspect. Biol. 1, a002949 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Saksens, N.T. et al. Dominant cystoid macular dystrophy. Ophthalmology 122, 180–191 (2015).

    Article  PubMed  Google Scholar 

  53. Svenson, K.L., Bogue, M.A. & Peters, L.L. Invited review: identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. J Appl. Physiol. 94, 1650–1659 (2003).

    Article  PubMed  Google Scholar 

  54. Won, J. et al. Translational vision research models program. Adv. Exp. Med. Biol. 723, 391–397 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Xin-Zhao Wang, C., Zhang, K., Aredo, B., Lu, H. & Ufret-Vincenty, R.L. Novel method for the rapid isolation of RPE cells specifically for RNA extraction and analysis. Exp. Eye Res. 102, 1–9 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Nordgård, O., Kvaløy, J.T., Farmen, R.K. & Heikkilä, R. Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal. Biochem. 356, 182–193 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Low, B.E. et al. Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest. Ophthalmol. Vis. Sci. 55, 387–395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakamoto, K., McCluskey, M., Wensel, T.G., Naggert, J.K. & Nishina, P.M. New mouse models for recessive retinitis pigmentosa caused by mutations in the Pde6a gene. Hum. Mol. Genet. 18, 178–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, M. et al. Age-related changes in visual function in cystathionine-β-synthase mutant mice, a model of hyperhomocysteinemia. Exp. Eye Res. 96, 124–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Roepman, R. et al. Interaction of nephrocystin-4 and RPGRIP1 is disrupted by nephronophthisis or Leber congenital amaurosis–associated mutations. Proc. Natl. Acad. Sci. USA 102, 18520–18525 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Kohl and C. Hamel for providing DNA samples of individuals with pattern dystrophies, J. Hansen for help with animal care, and JAX Scientific Services, including Genome Technologies, Histopathology Sciences and Imaging Sciences. This research was supported by Foundation Fighting Blindness Center Grant C-GE-0811-0548-RAD04 to the Radboud University Nijmegen Medical Center, Netherlands Organization for Scientific Research Vidi Innovational Research Award 016.096.309 to A.I.d.H., Nederlandse Oogonderzoek Stichting and Diana Hermens Stichting awards to C.B.H., a Research Foundation–Flanders grant to E.D.B. and B.P.L., FWO Flanders grant 3G079711 to E.D.B., the Belgian Science Policy Office Interuniversity Attraction Poles programme P7/43 award to E.D.B. and B.P.L., Netherlands Organization for Scientific Research Vici Innovational Research Award 865.12.005 to R.R., the Foundation Fighting Blindness (C-CMM-0811-0546-RAD02) to R.R., a US Veterans Administration Medical Research Service grant to N.S.P., a Foundation Fighting Blindness Center Grant to the Cole Eye Institute, Cleveland Clinic, an unrestricted award from Research to Prevent Blindness to the Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, US National Institutes of Health (NIH) and National Eye Institute grant EY016501 to P.M.N. and US NIH National Cancer Institute award P30CA034196 to The Jackson Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

N.T.M.S., M.P.K., P.M.N. and A.I.d.H. wrote the manuscript. N.T.M.S., S.A.-L., E.D.B., S.W., S.B., F.S., F.P.M.C., C.J.F.B., B.P.L. and C.B.H. performed clinical examinations in patients and families and/or provided patient samples. M.P.K., W.H., L.S., L.R., G.B.C. and J.R.C. performed genetic studies, live imaging, morphological studies and expression analysis in Ctnna1tvrm5 mice. F.E.S.-K. and T.W.v.M. performed CTNNA1 mutation analysis in patients and families. M.Y. and N.S.P. performed electrophysiology in Ctnna1tvrm5 mice. S.J.L. and R.R. performed coimmunoprecipitations of CTNNA1 with VCL. K.N. provided bioinformatic support for the whole-exome sequencing experiments in family A. M.P.K., C.B.H., P.M.N. and A.I.d.H. supervised the work.

Corresponding author

Correspondence to Anneke I den Hollander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Protein sequence alignment of CTNNA1 orthologs.

The amino acids affected by the mutations identified in three families with butterfly-shaped pigment dystrophy (p.Glu307Lys, p.Leu318Ser, p.Ile431Met) and in the Ctnna1tvrm5 mouse (p.Leu436Pro) are completely conserved among vertebrates. CTNNA1 accession numbers: Homo sapiens, NP_001894; Macaca mulatta, NP_001244297; Mus musculus, NP_033948; Rattus norvegicus, NP_001007146; Bos taurus, NP_001030443; Gallus gallus, XP_414513; Danio rerio, NP_571531.

Supplementary Figure 2 Distribution of CTNNA1 in wild-type and Ctnna1tvrm5 mice.

Ocular cryosections from (a,b,g) B6J (+/+; n = 3), (c,d,h) heterozygous (tvrm5/+; n = 3) or (e,f,i) homozygous (tvrm5/tvrm5; n = 3) Ctnna1tvrm5 mutant mice at 1 month of age were stained with antibody to CTNNA1 (red) and DAPI to show nuclei (blue) and imaged by wide-field fluorescence microscopy (a,c,e, red only; b,d,f–i, red and blue merged). Posterior tissue layers are labeled: GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ELM, external limiting membrane; RPE, retinal pigment epithelium; Ch, choroid. Staining of CTNNA1 was evident primarily in the OPL, ELM and RPE, with additional staining of the inner retinal vascular structures. At higher magnification (gi), regularly spaced punctate staining was observed near the apical surface of the RPE, suggesting localization of CTNNA1 to epithelial adherens junctions (arrowheads). Staining was also observed near the basal surface of the RPE. Scale bars in f and i are 20 µm and apply to af and gi, respectively.

Source data

Supplementary Figure 3 Expression of Ctnna1 mRNA and CTNNA1 in wild-type and Ctnna1tvrm5 mutant mice.

(a) Relative Ctnna1 mRNA levels at 1 month of age. Ctnna1 expression in heterozygous (tvrm5/+) or homozygous (tvrm5/tvrm5) Ctnna1tvrm5 mice was compared to that of B6J mice by quantitative RT-PCR of RNA extracted from a combined preparation of retina and RPE (retina + RPE; n = 5) or an RPE-enriched sample (RPE; n = 3). No significant changes in mRNA levels were observed (one-way ANOVA, F(2,12) = 0.19, P = 0.83; F(2,6) = 1.10, P = 0.39 for retina + RPE and RPE-enriched analyses, respectively). (b) Western blot of retina + RPE preparations from B6J (+/+), tvrm5/+ and tvrm5/tvrm5 mice at 1 month of age (n = 3 for each group). Relative molecular weights (Mr) determined from protein standards are indicated. Total protein was detected by Ponceau S staining (red), and a single 102-kDa band consistent with CTNNA1 was detected by antibody (white). (c) Quantification of the western blot shown in b indicated no significant change in relative CTNNA1 levels in retina + RPE lysates from heterozygous or homozygous Ctnna1tvrm5 mutant mice as compared to B6J mice (one-way ANOVA, F(2,6) = 0.62, P = 0.57). In a and c, mean values relative to B6J mice are shown with bounds calculated from error propagation; the dashed line at 1.0 indicates expression equivalent to that of B6J mice.

Source data

Supplementary Figure 4 Disease progression in wild-type and Ctnna1tvrm5 mutant mice.

(a) Photoreceptor degeneration as indicated by a decrease in ONL thickness was assessed by OCT in B6J (+/+), heterozygous (tvrm5/+) and homozygous (tvrm5/tvrm5) Ctnna1tvrm5 mice at 1 (n = 3, 4 and 7 mice, respectively), 3 (n = 5, 4 and 3 mice, respectively) and 12–14 (n = 5, 5 and 7 mice, respectively) months of age. Data points indicate mean ONL thickness in the eyes of individual mice measured by OCT ~250 μm from the optic nerve head in each retinal quadrant and averaged; bars show the means ± s.d. of these averaged values among mice. A significant effect of strain on ONL thickness was noted (one-way ANOVA, F(2,11) = 29.7, P < 0.0001; F(2,9) = 19.8, P = 0.0005; F(2,14) = 57.7, P < 0.0001 at 1, 3 and 12–14 months of age, respectively). Multiple comparisons (Tukey post-hoc analysis) indicated significant differences at these ages between homozygous mice and heterozygous mice or B6J mice (*P < 0.002, **P < 0.0001) but not between B6J and heterozygous mice (n.s., P > 0.05). (bd) Progression of mottling in heterozygous Ctnna1tvrm5 mice. Bright-field fundus images obtained at 1 (n = 4 mice), 6 (n = 5) and 12–14 (n = 5) months of age showed increased mottling with age, particularly in the superior temporal retina. (b) Right eye at 1 month of age. (c) Left eye at 6 months of age. (d) Right eye at 12 months of age.

Supplementary Figure 5 Coimmunoprecipitation studies of CTNNA1 and vinculin (VCL).

Wild-type 3×HA-CTNNA1 efficiently coimmunoprecipitated with 3×FLAG-VCL (panel 4, lane 1), and introduction of the CTNNA1 variants c.160C>T; p.Arg54Cys (lane 2), c.919G>A; p.Glu307Lys (lane 3), c.953T>C; p.Leu318Ser (lane 4), c.1293T>G; p.Ile431Met (lane 5) and c.1307T>C; p.Leu436Pro (lane 6) did not significantly affect the binding. Specificity was confirmed by inclusion of the unrelated p63, which failed to coimmunoprecipitate with wild-type vinculin (lane 7). As a positive control, RPGRIP1 efficiently coimmunoprecipitated with nephrocystin-4 (NPHP4; lane 8). Immunoblots of the input are shown in panels 1 and 2, and immunoblots of the FLAG immunoprecipitates are shown in panels 3 and 4. Size markers are depicted in kDa.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–4. (PDF 910 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saksens, N., Krebs, M., Schoenmaker-Koller, F. et al. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nat Genet 48, 144–151 (2016). https://doi.org/10.1038/ng.3474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing