Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice

Abstract

Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in many age-related pathologies. Here we identify mtDNA deletions as a driving force behind the premature aging phenotype of mitochondrial mutator mice, and provide evidence for a homology-directed DNA repair mechanism in mitochondria that is directly linked to the formation of mtDNA deletions. In addition, our results demonstrate that the rate at which mtDNA mutations reach phenotypic expression differs markedly among tissues, which may be an important factor in determining the tolerance of a tissue to random mitochondrial mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial deletion load and spectrum in WT, Polga+/mut and Polgamut/mut mice.
Figure 2: Tissue distribution of COX-negative cells.

Similar content being viewed by others

References

  1. Linnane, A.W., Marzuki, S., Ozawa, T. & Tanaka, M. Lancet 1, 642–645 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Kujoth, G.C. et al. Science 309, 481–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Trifunovic, A. et al. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Vermulst, M. et al. Nat. Genet. 39, 540–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Tanhauser, S.M. & Laipis, P.J. J. Biol. Chem. 270, 24769–24775 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava, S. & Moraes, C.T. Hum. Mol. Genet. 14, 893–902 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schriner, S.E. et al. Science 308, 1909–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Kujoth, G.C., Bradshaw, P.C., Haroon, S. & Prolla, T.A. PLoS Genet. 3, e24 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kraytsberg, Y. et al. Science 304, 981 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Mita, S. et al. Nucleic Acids Res. 18, 561–567 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greaves, L.C. et al. Proc. Natl. Acad. Sci. USA 103, 714–719 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Khrapko, K., Kraytsberg, Y., de Grey, A.D., Vijg, J. & Schon, E.A. Aging Cell 5, 279–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kraytsberg, Y. et al. Nat. Genet. 38, 518–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bender, A. et al. Nat. Genet. 38, 515–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Khaidakov, M., Siegel, E.R. & Shmookler Reis, R.J. Mech. Ageing Dev. 127, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants AG01751 (L.A.L. and P.S.R.), CA102029 and ES11045 (L.A.L.) and AG021905 (T.A.P. and G.C.K.) from the US National Institutes of Health. J.H.B. is a Research Fellow of the Terry Fox Foundation through an award from the National Cancer Institute of Canada. J.W. was supported by the Brookdale Leadership Aging Fellowship. The authors thank R.S. Mangalindan, C. Masuda and N. Ericson for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.V. carried out the experiments described in Figures 1a and b, Supplementary Figures 1,2,3,4,5 and Supplementary Tables 1 and 2. M.V. adapted the RMC-assay and wrote the paper. J.W. and M.V. generated Figure 2 and Supplementary Figures 6 and 7. M.V., J.H.B. and L.A.L. conceived the project. J.H.B. performed cell culture and provided technical expertise. G.C.K., T.A.P. and P.S.R. provided animal care, tissues and technical assistance. L.A.L. supervised the experimental work and interpretation of the data. All authors commented on and discussed the paper.

Note: Supplementary information is available on the Nature Genetics website.

Corresponding author

Correspondence to Lawrence A Loeb.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–7, Supplementary Tables 1 and 2 (PDF 908 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermulst, M., Wanagat, J., Kujoth, G. et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40, 392–394 (2008). https://doi.org/10.1038/ng.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing