Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

X-chromosome inactivation occurs at different times in different tissues of the post-implantation mouse embryo

A Correction to this article was published on 01 July 1993

Abstract

During mammalian development, one of the two X chromosomes in female embryos is randomly inactivated in the somatic cell in order to achieve gene dosage compensation. But is X inactivation established simultaneously or is it accomplished over time in a lineage–dependent fashion? We have examined this question in mouse embryos carrying an X–linked lacZ transgene. This transgene is subject to inactivation and the loss of β–galactosidase activity provides a direct indication of X inactivation in individual cells. We find that X inactivation proceeds with different schedules in different somatic tissues, and the notochord, the heart, cranial mesoderm and the hindgut are among the last tissues to undergo X inactivation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Adler, D.A., West, J.D. & Chapman, V.M. Expression of α-galactosidase in preimplantation mouse embryos. Nature 267, 838–839 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Monk, M. & Harper, M. X-chromosome activity in preimplantation mouse embryos from XX and XO mothers. J. Embryol. exp. Morph. 46, 53–64 (1978).

    CAS  PubMed  Google Scholar 

  3. Epstein, C.J., Smith, S., Travis, B. & Tucker, G. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274, 500–502 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Kratzer, P.G. & Gartler, S.M. HGPRT activity changes in preimplantation mouse embryos. Nature 274, 503–504 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Monk, M., Harper, M.I. Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311–313 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Monk, M. A stem-line model for cellular and chromosomal differentiation in early mouse development. Differentiation 19, 71–76 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Takagi, N. Differentiation of X chromosomes in early female mouse embryos. Exp. Cell Res. 86, 127–135 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. Takagi, N. & Sasaki, M. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Rastan, S. et al. X-chromosome inactivation in extra-embryonic membranes of diploid parthenogenetic mouse embryos demonstrated by differential staining. Nature 288, 172–173 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Takagi, N., Sugawara, O. & Sasaki, M. Regional and temporal changes in the pattern of X-chromosome replication during the early postimplantation development of the female mouse. Chromosoma 85, 275–286 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Gautier, C., Mehtali, M. & Lathe, R. A ubiquitous mammalian expression vector, pHMG, based on a housekeeping gene promoter. Nucl. Acids Res. 20, 8398 (1989).

    Google Scholar 

  12. Tam, P.P.L. & Tan, S-S. The somitogenic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryos. Development 115, 703–715 (1992).

    CAS  PubMed  Google Scholar 

  13. West, J.D. & Chapman, V.M. Variation of X-chromosome expression in mice detected by electrophoresis of phosphoglycerate kinase. Genet. Res. Camb. 32, 91–102 (1978).

    Article  CAS  Google Scholar 

  14. West, J.D., Frels, W.I., Chapman, V.M. & Papaioannou, V.E. Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12, 873–822 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Ponder, B.A.J., Schmidt, G.H., Wilkinson, M.M., Wood, M.J., Monk, M. & Reid, A. Derivation of mouse intestinal crypts from single progenitor cells. Nature 313, 689–691 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Griffiths, D.F.R., Davies, S.J., Williams, D., Williams, G.T. & Williams, E.D. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature 333, 461–463 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Lyon, M.F., Searle, A.G., Ford, C.E. & Ohno, S. A mouse translocation suppressing sex-linked variegation. Cytogenetics 3, 306–323 (1964).

    Article  CAS  PubMed  Google Scholar 

  18. Ohno, S., Lyon, M.F. Cytological study of Searle's X-autosome translocation in Mus. musculus. Chromosoma 16, 90–100 (1965).

    Article  CAS  PubMed  Google Scholar 

  19. Goldman, M.A., Stokes, K.R., Idzerda, R.L., McKnight, G.S., Hammer, R.E., Brinster, R.L. & Gartler, S.M. A chicken transferrin gene in transgenic mice escapes X-chromosome inactivation. Science 536, 593–595 (1987).

    Article  Google Scholar 

  20. Krumlauf, R. et al. Differential expression of α-fetoprotein genes on the inactive X chromosome in extraembryonic and somatic tissues of a transgenic mouse line. Nature 319, 224–226 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Collick, A., Reik, W., Barton, S.C. & Surani, A.H. CpG methylation of an X-linked transgene is determined by somatic events postfertilization and not germline imprinting. Development 104, 235–244 (1988).

    CAS  PubMed  Google Scholar 

  22. Takagi, N. & Abe, K. Detrimental effects of two active X chromosomes on early mouse development. Development 109, 189–201 (1990).

    CAS  PubMed  Google Scholar 

  23. Lawson, K.A., Meneses, J.J. & Pedersen, R.A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    CAS  PubMed  Google Scholar 

  24. Tam, P.P.L. & Beddington, R.S.P. Establishment and organization of germ layers in the gastrulating mouse embryo. In Postimplantation development in the mouse. Ciba Found. Symp. 165, 27–49 (1992).

    Google Scholar 

  25. Grant, S.G. & Chapman, V.M. Mechanisms of X-chromosome regulation. Ann. Rev. Genet. 22, 199–233 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Cattanach, B.M. Control of chromosome inactivation. Ann. Rev. Genet. 9, 1–18 (1975).

    Article  CAS  PubMed  Google Scholar 

  27. Gartler, S.M. & Riggs, A.D. Mammalian X-chromosome inactivation. Ann. Rev. Genet. 17, 155–190 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Grant, M., Zuccotti, M. & Monk, M. Methylation of CpG sites of two X-linked genes coincides with X-inactivation in the female mouse embryo but not in the germ line. Nature Genet. 2, 161–166 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Lock, L.F., Takagi, N. & Martin, G.R. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, SS., Williams, E. & Tam, P. X-chromosome inactivation occurs at different times in different tissues of the post-implantation mouse embryo. Nat Genet 3, 170–174 (1993). https://doi.org/10.1038/ng0293-170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0293-170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing