Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High frequency de novo alterations in the long–range genomic structure of the mouse pseudoautosomal region

Abstract

The pseudoautosomal region (PAR) is a segment of shared homology between the X and Y chromosomes. Here we report physical linkage of three mouse PAR probes: DXYHgul, DXYMov15 and (TTAGGG)n. Steroid sulphatase (Sts) maps distal to these three probes, indicating that there is an internal array of the telomere sequence (TTAGGG)n in the PAR. Pseudoautosomal Pacl restriction fragments, up to 2 Mb in size, are unstable in C57BL/6 × C57BL76 crosses. New alleles, often several hundred kilobases different in size, occur at a sex–averaged rate of 30% per allele. Such frequent large–scale germ–line genome rearrangements are without precedent in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hale, D.W. Is X–Y recombination necessary for spermatocyte survival during mammalian spermatogenesis? Cytogenet. Cell Genet. 65, 278–282 (1994).

    Article  CAS  Google Scholar 

  2. Ashley, T., Ried, T. & Ward, D.C. Detection of nondisjunction and recombination in meiotic and postmeiotic cells from XYSxr [XY,Tp(Y)1Ct] mice using multicolor fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 91, 524–528 (1994).

    Article  CAS  Google Scholar 

  3. Rappold, G.A. The pseudoautosomal regions of the human sex chromosomes. Hum. Genet. 92, 315–324 (1993).

    Article  CAS  Google Scholar 

  4. Matsuda, Y., Hirobe, T. & Chapman, V.M. Genetic basis of X–Y chromosome dissociation and male sterility in interspecific hybrids. Proc. Nati. Acad. Sci. USA 88, 4850–4854 (1991).

    Article  CAS  Google Scholar 

  5. Hale, D.W., Washburn, L.L. & Eicher, E.M. Meiotic abnormalities in hybrid mice of the C57BL/6 × Mus spretus cross suggest a cytogenetic basis for Haldane's rule of hybrid sterility. Cytogenet. Cell Genet. 63, 221–234 (1993).

    Article  CAS  Google Scholar 

  6. Matsuda, Y., Imai, H.T., Moriwaki, K., Kondo, K. & Bonhomme, F. X–Y chromosome dissociation in wild derived Mus musculus subspecies, laboratory mice, and their F, hybrids. Cytogenet. Cell Genet. 34, 241–252 (1982).

    Article  CAS  Google Scholar 

  7. Kipling, D. et al. Structural variation of the pseudoautosomal region between and within inbred mouse strains. Proc. Natl. Acad. Sci. USA 93, 171–175 (1996).

    Article  CAS  Google Scholar 

  8. Harbers, K., Soriano, P., Müller, U. & Jaenisch, R. High frequency of unequal recombination in pseudoautosomal region shown by proviral insertion in transgenic mouse. Nature 324, 682–685 (1986).

    Article  CAS  Google Scholar 

  9. Harbers, K., Francke, U., Soriano, P., Jaenisch, R. & Müller, U. Structure and chromosomal mapping of a highly polymorphic repetitive DNA sequence from the pseudoautosomal region of the mouse sex chromosomes. Cytogenet. Cell Genet. 53, 129–133 (1990).

    Article  CAS  Google Scholar 

  10. Takahashi, Y. et al. Methylation imprinting was observed of mouse mo-2 macrosatellite on the pseudoautosomal region but not on chromosome 9. Chromosoma 103, 450–458 (1994).

    Article  CAS  Google Scholar 

  11. Eicher, E.M. et al. The mouse Y* chromosome involves a complex rearrangement, including interstitial positioning of the pseudoautosomal region. Cytogenet. Cell Genet. 57, 221–230 (1991).

    Article  CAS  Google Scholar 

  12. Sefton L., Arnaud, D., Goodfellow, P.N., Simmler, M.-C. & Avner, R. Characterization of the central region containing theX-inactivation center and terminal region of the mouse X chromosome using irradiation and fusion gene transfer hybrids. Mamm. Genome 2, 21–31 (1992).

    Article  CAS  Google Scholar 

  13. Matsuda, Y. & Chapman, V.M. Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis 16, 261–272 (1995).

    Article  CAS  Google Scholar 

  14. Eicher, E.M., Lee, B.K., Washburn, L.L., Hale, D.W. & King, T.R. Telomere-related markers for the pseudoautosomal region of the mouse genome. Proc Natl. Acad. Sci. USA 89, 2160–2164 (1992).

    Article  CAS  Google Scholar 

  15. Eicher, E.M. & Shown, E.P. Molecular markers that define the distal ends of mouse autosomes 4,13, and 19 and the sex chromosomes. Mamm. Genome 4, 226–229 (1993).

    Article  CAS  Google Scholar 

  16. Salido, E.G., Li, X.M., Yen, P.H., Martin, N., Mohandas, T.K. & Shapiro, L.J. Cloning and expression of the mouse pseudoautosomal steroid sulphatase gene (Sts). Nature Genet. 13, 83–86 (1996).

    Article  CAS  Google Scholar 

  17. Keitges, E., Rivest, M., Siniscalco, M. & Gartler, S.M. X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Nature 315, 226–227 (1985).

    Article  CAS  Google Scholar 

  18. Soriano, P. et al. High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc. Natl. Acad. Sci. USA 84, 7218–7220 (1987).

    Article  CAS  Google Scholar 

  19. Keitges, E.A., Schorderet, D.F. & Gartler, S.M. Linkage of the steroid sulphatase gene to the sex-reversed mutation in the mouse. Genetics 116, 465–468 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nagamine, C.M., Michot, J.-L., Roberts, C., Guénet, J.-L. & Bishop, C.E. Linkage of the murine steroid sulfatase locus, Sfs, to sex reversed, Sxr a genetic and molecular analysis. Nucl. Acids Res. 15, 9227–9238 (1987).

    Article  CAS  Google Scholar 

  21. Wilkie, A.O.M. et al. Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64, 595–606 (1991).

    Article  CAS  Google Scholar 

  22. Rugarli, E.I. et al. Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice. Nature Genet. 10, 466–471 (1995).

    Article  CAS  Google Scholar 

  23. Meyne, J. et al. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99, 3–10 (1990).

    Article  CAS  Google Scholar 

  24. Yen, C.-H., Matsuda, Y., Chapman, V.M. & Elliott, R.W. A genomic clone containing a telomere array maps near the centromere of mouse Chromosome 6. Mamm. Genome 6, 96–102 (1995).

    Article  CAS  Google Scholar 

  25. Elliott, R.W. & Pazik, J. An interstitial telomere array near Hba on mouse Chr 11 is a candidate for the homolog of the telomere at human 16p. Genomics 27, 217–218 (1995).

    Article  CAS  Google Scholar 

  26. Cattanach, B.M., Pollard, C.E. & Hawkes, S.G. Sex-reversed mice: XX and XO males. Cytogenetics 10, 318–337 (1971).

    Article  CAS  Google Scholar 

  27. Ashley, T., Lieman, J. & Ward, D.C. Multicolor FISH with a telomene repeat and Sry sequences shows that Sxr (Sex reversal) in the mouse is a new type of chromosome rearrangement. Cytogenet. Cell Genet. 71, 217–222 (1995).

    Article  CAS  Google Scholar 

  28. Kipling, D. & Cooke, H.J. Hypervariable ultra-long telomeres in mice. Nature 347, 400–402 (1990).

    Article  CAS  Google Scholar 

  29. Kipling, D., Ackford, H.E., Taylor, B.A. & Cooke, H.J. Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11, 235–241 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kipling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipling, D., Salido, E., Shapiro, L. et al. High frequency de novo alterations in the long–range genomic structure of the mouse pseudoautosomal region. Nat Genet 13, 78–82 (1996). https://doi.org/10.1038/ng0596-78

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0596-78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing