Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High resolution visual mapping of stretched DNA by fluorescent hybridization

Abstract

We describe a method for stretching DNA, which, when combined with fluorescent hybridization procedures, forms a new mapping technology that produces a high resolution, vivid, multi–colour image and map. Restriction fragments and cosmid probes were successfully mapped by this procedure with validation by standard restriction mapping. A long range map of a >200 kilobase region containing five copies of the amplified dihydrofolate reductase gene was easily generated within two days. This DNA mapping procedure offers a significant and rapid alternative to a variety of standard mapping procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, E.D. & Olson, M.V. Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. Science 250, 94–98 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Cox, D.R., Burmeister, M., Price, E.R., Kim, S. & Myers, R.M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Ballanne-Chantelot, B. et al. Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70, 1059–1068 (1992).

    Article  Google Scholar 

  4. Lichter, P. et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Trask, B., Pinkel, D. & van den Engh, G. The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5, 710–717 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Trask, B.J., Massa, H., Kenwrick, S. & Gitschier, J. Mapping of human chromosome Xo28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am. J. hum. Genet. 48, 1–15 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lawrence, J.B., Singer, R.H. & McNeil, J.A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249, 928–932 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. van den Engh, G., Sachs, R. & Trask, B.J. Estimating genomic distances from DNA sequence location in cell nuclei by a random walk model. Science 257, 1410–1412 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Heng, H.H.Q., Squire, J. & Tsui, L.-C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. natn. Acad. Sci. U.S.A. 89, 9509–9513 (1992).

    Article  CAS  Google Scholar 

  10. Wiegant, J. et al. High-resolution in situ hybridization using DNA halo preparations. Hum. molec. Genet. 1, 587–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence, J.B., Carter, K.C. & Gerdes, M.J. Extending the capabilities of interphase chromatin mapping. Nature Genet. 2, 171–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Windle, B., Draper, B.W., Yin, Y., O'Gorman, S. & Wahl, G.M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 5, 160–174 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Evans, G.A. & Wahl, G.M. Cosmid vectors for genomic walking and rapid restriction mapping. Meth. Enzymol. 152, 604–610 (1987).

    Article  CAS  Google Scholar 

  14. Ma, C., Looney, J.E., Leu, T.H. & Hamlin, J.L. Organization and genesis of dihydrofolate reductase amplicons in the genome of a methotrexate-resistant Chinese hamster ovary cell line. Molec. cell. Biol. 8, 2316–2327 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amler, L.C. & Schwab, M. Amplified N-myc in human neuroblastoma cells is often arranged as clustered tandem repeats of differently recombined DNA. Molec. cell. Biol. 9, 4903–4913 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pinkel, D., Straume, T. & Gray, J.W. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. natn. Acad. Sci. U.S.A. 83, 2934–2938 (1986).

    Article  CAS  Google Scholar 

  17. Urlaub, G. et al. Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions. Somat. Cell molec. Genet. 12, 555–566 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parra, I., Windle, B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet 5, 17–21 (1993). https://doi.org/10.1038/ng0993-17

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0993-17

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing