Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures

Abstract

Among the diverse family of collagens, the widely expressed microfibrillar type VI collagen is believed to play a role in bridging cells with the extracellular matrix. Several observations imply substrate properties for cell attachment1 as well as association with major collagen fibers2. Previously, we have established genetic linkage between the genes encoding the three constituent α-chains of type VI collagen and Bethlem myopathy3–5. A distinctive feature of this autosomal dominant disorder consists of contractures of multiple joints in addition to generalized muscular weakness and wasting6–10. Nine kindreds show genetic linkage to the COL6A1–COL6A2 cluster on chromosome 21q22.3 (refs 3,4; manuscript submitted) whereas one family shows linkage to markers on chromosome 2q37 close to COL6A3 (ref. 5). Sequence analysis in four families reveals a mutation in COL6A1 in one and a COL6A2 mutation in two other kindreds. Both mutations disrupt the Gly-X-Y motif of the triple helical domain by substitution of Gly for either Val or Ser. Analogous to the putative perturbation of the anchoring function of the dystrophin-associated complex in congenital muscular dystrophy with mutations in the α2-subunit of laminin, our observations suggest a similar mechanism in Bethlem myopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stallcup, W.B., Dahlin, K. & Healy, P. Interaction of the NG2 chondroitin sulfate proteoglycan with collagen type VI. J. Cell Biol. 111, 3177–3188 (1990).

    Article  CAS  Google Scholar 

  2. Bonaldo, P., Russo, V., Bucciotti, F., Doliana, R. & Colombatti, A. Structural and functional features of the alpha 3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry 29, 1245–1254 (1990).

    Article  CAS  Google Scholar 

  3. Jöbsis, G.J., Barth, P.G., Boers, J.M., Baas, F., Bolhuis, P.A. & de Visser, M. Bethlem myopathy: clinical and genetic aspects. Neurology 45, 881S (1995).

    Google Scholar 

  4. Jöbsis, G.J. et al. Genetic localization of Bethlem myopathy. Neurology 46, 779–782 (1996).

    Article  Google Scholar 

  5. Speer, M.C. et al. Evidence for locus heterogeneity in the Bethlem myopathy and linkage to 2q37. Hum. Mol. Genet. 5, 1043–1046 (1996).

    Article  CAS  Google Scholar 

  6. Bethlem, J. & van Wijngaarden, G.K. Benign myopathy, with autosomal dominant inheritance: a report on three pedigrees. Brain 99, 91–100 (1976).

    Article  CAS  Google Scholar 

  7. Mohire, M.D. et al. Early-onset benign autosomal dominant limb-girdle myopathy with contractures (Bethlem myopathy). Neurology 38, 573–580 (1988).

    Article  CAS  Google Scholar 

  8. Boers, J.M. Een congenitale myopathie met contracturen. Thesis, University of Amsterdam, 1984).

  9. Arts, W.F., Bethlem, J. & Volkers, W.S. Further investigations on benign myopathy with autosomal dominant inheritance. J. Neurol. 217, 201–206 (1978).

    Article  CAS  Google Scholar 

  10. Merlini, L. et al. Bethlem myopathy: early-onset benign autosomal dominant myopathy with contractures. Description of two new families. Neuromusc. Disord. 4, 503–511 (1994).

    Article  CAS  Google Scholar 

  11. Renieri, A. et al. Mutation scanning of the entire COL4A5 coding sequence in Alport syndrome and genotype-phenotype correlation. Am. J. Hum. Genet. 57, A9 (1995).

    Google Scholar 

  12. Vogel, B.E. et al. A substitution of cysteine for glycine 748 of the a1 chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away. J. Biol. Chem. 263, 19249–19255 (1988).

    CAS  PubMed  Google Scholar 

  13. Steinmann, B. & Raghunath, M. Delayed helix formation of mutant collagen. Science 267, 258 (1995).

    Article  CAS  Google Scholar 

  14. Romanic, A.M. et al. Self-assembly of collagen I from a proband homozygous for a mutation that substituted serine for glycine at position 661 in the alpha 2 (I) chain; possible relationship between the effects of mutations on critical concentration and the severity of the phenotype. J. Biol. Chem. 269, 11614–11619 (1994).

    CAS  PubMed  Google Scholar 

  15. Swasdison, S. & Mayne, R. Location of the integrin complex and extracellular matrix molecules at the chicken myotendinous junction. Cell Tissue Res. 257, 537–543 (1989).

    Article  CAS  Google Scholar 

  16. Hessle, H. & Engvall, E. Type VI collagen; studies on its localization, structure, and biosynthetic form with monoclonal antibodies. J. Biol. Chem. 259, 3955–3961 (1984).

    CAS  PubMed  Google Scholar 

  17. von der Mark, H., Aumailley, M., Wick, G., Fleischmajer, R. & Timpl, R. Immunochemistry, genuine size and tissue localization of collagen VI. Eur. J. Biochem. 142, 493–502 (1984).

    Article  CAS  Google Scholar 

  18. Mochizuki, T. et al. Identification of mutations in the α3 (IV) and α4 (IV) collagen genes in autosomal recessive Alport syndrome. Nature Genet. 8, 77–81 (1994).

    Article  CAS  Google Scholar 

  19. Ibrahimi, A. et al. Cloning of α2 chain of type VI collagen and expression during mouse development. Biochem. J. 289, 141–147 (1993).

    Article  CAS  Google Scholar 

  20. Ozawa, E. et al. Dystrophin-associated proteins in muscular dystrophy. Hum. Mol. Genet. 4, 1171–1716 (1995).

    Article  Google Scholar 

  21. Lim, L.E. et al. β-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nature Genet. 11, 257–265 (1995).

    Article  CAS  Google Scholar 

  22. Bönnemann, C.G. et al. β-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nature Genet. 11, 266–273 (1995).

    Article  Google Scholar 

  23. Helbling-Leclerc, A. et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet. 11, 216–218 (1995).

    Article  CAS  Google Scholar 

  24. Xu, H., Wu, X.R., Wewer, U.M. & Engvall, E. Murine muscular dystrophy caused by a mutation in the laminin β2 (Lama2) gene. Nature Genet. 8, 297–302 (1994).

    Article  CAS  Google Scholar 

  25. Schäffer, A.A., Grupta, S.K., Shriram, K. & Cottingham, R.W. Avoiding recomputation in linkage analysis. Hum. Hered. 44, 225–237 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jöbsis, G., Keizers, H., Vreijling, J. et al. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14, 113–115 (1996). https://doi.org/10.1038/ng0996-113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-113

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing