Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa

Abstract

Dystrophic epidermolysis bullosa (DEB) is a family of inherited mechano-bullous disorders caused by mutations in the human type VII collagen gene (COL7A1). Individuals with DEB lack type VII collagen and anchoring fibrils, structures that attach epidermis and dermis. The current lack of treatment for DEB is an impetus to develop gene therapy strategies that efficiently transfer and stably express genes delivered to skin cells in vivo. In this study, we delivered and expressed full-length type VII collagen using a self-inactivating minimal lentivirus-based vector. Transduction of lentiviral vectors containing the COL7A1 transgene into recessive DEB (RDEB) keratinocytes and fibroblasts (in which type VII collagen was absent) resulted in persistent synthesis and secretion of type VII collagen. Unlike RDEB parent cells, the gene-corrected cells had normal morphology, proliferative potential, matrix attachment and motility. We used these gene-corrected cells to regenerate human skin on immune-deficient mice. Human skin regenerated by gene-corrected RDEB cells had restored expression of type VII collagen and formation of anchoring fibrils at the dermal–epidermal junction in vivo. These studies demonstrate that it is possible to restore type VII collagen gene expression in RDEB skin in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lentiviral vector–mediated gene transfer of type VII collagen to RDEB cells.
Figure 2: Expression of type VII collagen reversed RDEB morphology.
Figure 3: Expression of type VII collagen reverted RDEB hypermotility.
Figure 4: Expression of type VII collagen enhanced RDEB adhesion.
Figure 5: Gene-corrected RDEB cells showed enhanced growth potential.
Figure 6: Restoration of type VII collagen and anchoring fibrils in reconstituted DEB skin in vivo.

Similar content being viewed by others

References

  1. Uitto, J. & Christiano, A.M. Molecular basis for the dystrophic forms of epidermolysis bullosa: mutations in the type VII collagen gene. Arch. Dermatol. Res. 287, 16–22 (1994).

    Article  CAS  Google Scholar 

  2. Burgeson, R.E. Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J. Invest. Dermatol. 101, 252–255 (1993).

    Article  CAS  Google Scholar 

  3. Sakai, L.Y., Keene, D.R., Morris, N.P. & Burgeson, R.E. Type VII collagen is a major structural component of anchoring fibrils. J. Cell Biol. 103, 1577–1586 (1986).

    Article  CAS  Google Scholar 

  4. Christiano, A.M., Greenspan, D.S., Lee, S. & Uitto, J. Cloning of human type VII collagen: complete primary sequence of the α1(VIII) chain and identification of intragenic polymorphisms. J. Biol. Chem. 26, 20256–20262 (1994).

    Google Scholar 

  5. Christiano, A.M. & Uitto, J. Impact of molecular genetic diagnosis on dystrophic epidermolysis bullosa. Curr. Opin. Dermatol. 3, 225–232 (1996).

    Google Scholar 

  6. Briggaman, R.A. & Wheeler, C.E. Jr. The epidermal–dermal junction. J. Invest. Dermatol. 65, 71–84 (1975).

    Article  CAS  Google Scholar 

  7. Morgan, R.A. & Anderson, W.F. Human gene therapy. Ann. Rev. Biochem. 62, 191–217 (1993).

    Article  CAS  Google Scholar 

  8. Anderson, W.F. Human gene therapy. Nature 392, 25–30 (1998).

    Article  CAS  Google Scholar 

  9. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  Google Scholar 

  10. Kuhn, U., Terunuma, A., Pfutzner, W., Foster, R.A. & Vogel, C. In vivo assessment of gene delivery to keratinocytes by lentiviral vectors. J. Virol. 76, 1496–1504 (2002).

    Article  CAS  Google Scholar 

  11. Sakoda, T., Kasahara, N., Hamamori, Y. & Kedes, L. A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J. Mol. Cell Cardiol. 31, 2037–2047 (1999).

    Article  CAS  Google Scholar 

  12. Naldini, L. Lentivirus as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 9, 457–463 (1998).

    Article  CAS  Google Scholar 

  13. Chen, M. et al. Development and characterization of a recombinant truncated type VII collagen “minigene”: implication for gene therapy of dystrophic epidermolysis bullosa. J. Biol. Chem. 275, 24429–24435 (2000).

    Article  CAS  Google Scholar 

  14. Wang, C., Nelson, C.F., Brinkman, A.M., Miller, A.C. & Hoeffler, W.K. Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human sin equivalent. J. Invest. Dermatol. 114, 674–680 (2000).

    Article  CAS  Google Scholar 

  15. Fenjves, E.S., Yao, S.N., Kurachi, K. & Taichman, L.B. Loss of expression of a retrovirus-transduced gene in human keratinocytes. J. Invest. Dermatol. 106, 576–581 (1996).

    Article  CAS  Google Scholar 

  16. Choate, K. & Khavari, P.A. Sustainability of keratinocyte gene transfer and cell survival in vivo. Hum. Gene Ther. 8, 895–901 (1997).

    Article  CAS  Google Scholar 

  17. Robbins, P.B. et al. Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J. Virol. 71, 9466–9474 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Robbins, P.B. et al. Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc. Natl Acad. Sci. USA 95, 10182–10187 (1998).

    Article  CAS  Google Scholar 

  19. Boyce, S.T. & Ham, R.G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81 Suppl., 33S–44S (1983).

    Article  CAS  Google Scholar 

  20. O'Keefe, E.J. & Chiu, M.L. Stimulation of thymidine incorporation in keratinocytes by insulin, epidermal growth factor, and placental extract: comparison with cell number to assess growth. J. Invest. Dermatol. 90, 2–7 (1988).

    Article  CAS  Google Scholar 

  21. Halbert, C.L., Demers, G.W. & Galloway, D.A. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J. Virol. 66, 2125–2134 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sastry, L., Johnson, T., Hobson, M.J., Smucker, B. & Cornetta, K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther. 9, 1155–1162 (2002).

    Article  CAS  Google Scholar 

  23. Cui, Y., Iwakuma, T. & Chang, L.J. Contributions of viral splice sites and cis-regulatory elements to lentivirus vector function. J. Virol. 73, 6171–6176 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sirven, A. et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96, 4103–4110 (2000).

    CAS  PubMed  Google Scholar 

  25. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Albrecht-Buehler, G. The phagokinetic tracks of 3T3 cells. Cell 11, 395–404 (1977).

    Article  CAS  Google Scholar 

  27. Woodley, D.T., Bachmann, P.M. & O'Keefe, E.J. Laminin inhibits human keratinocyte migration. J. Cell Physiol. 136, 140–146 (1988).

    Article  CAS  Google Scholar 

  28. Chen, M., O'Toole, E.A., Li, Y.-Y. & Woodley, D.T. α2β1 integrin mediates dermal fibroblast attachment to type VII collagen via a 158-amino-acid segment of the NC1 domain. Exp. Cell Res. 249, 231–239 (1999).

    Article  CAS  Google Scholar 

  29. Chen, M., Costa, F.K., Lindvay, C.R., Han, Y.P. & Woodley, D.T. The recombinant expression of full-length type VII collagen and characterization of molecular mechanisms underlying dystrophic epidermolysis bullosa. J. Biol. Chem. 277, 2118–2124 (2002).

    Article  CAS  Google Scholar 

  30. Gammon, W.R., Briggaman, R.A., Inman, A.Q. III, Queen, L.L. & Wheeler, C.E. Differentiating anti-lamina lucida and anti-sublamina densa anti-BMZ antibodies by indirect immunofluorescence on 1.0 M sodium chloride-separated skin. J. Invest. Dermatol. 82, 139–144 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health to M.C. and D.T.W. M.C. was supported by a Dermatology Foundation Career Development Award and a Dermatology Foundation Research Grant. C.M. and N.K. are also funded in part by a grant from the US National Institutes of Health through the Molecular Biology Core/Virus Vector Subcore of the University of Southern California Research Center for Liver Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Kasahara, N., Keene, D. et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet 32, 670–675 (2002). https://doi.org/10.1038/ng1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing