Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity

Abstract

In mammals, loss of APC/Apc gatekeeper function initiates intestinal tumorigenesis. Several different mechanisms have been shown or proposed to mediate functional loss of APC/Apc: mutation in APC/Apc, non-disjunction, homologous somatic recombination and epigenetic silencing. The demonstration that, in the C57BL/6 (B6) ApcMin/+ mouse model of inherited intestinal cancer, loss of Apc function can occur by loss of heterozygosity (LOH) through somatic recombination between homologs presents an opportunity to search for polymorphisms in the homologous somatic recombination pathway. We report that the Robertsonian translocation Rb(7.18)9Lub (Rb9) suppresses the multiplicity of intestinal adenomas in this mouse model. As the copy number of Rb9 increases, the association with the interphase nucleolus of the rDNA repeats centromeric to the Apc locus on Chromosome 18 is increasingly disrupted. Our analysis shows that homologous somatic recombination is the principal pathway for LOH in adenomas in B6 ApcMin/+ mice. These studies provide additional evidence that neoplastic growth can initiate in the complete absence of canonical genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rb9 acts as a suppressor of tumor multiplicity in ApcMin/+ mice.
Figure 2: Rb9 does not affect tumor size or regional distribution.
Figure 3: Formal evaluation of the hypothesis of a principal non-disjunctional LOH pathway.
Figure 4: Nuclear localization of centromeres.

Similar content being viewed by others

References

  1. Fearnhead, N.S., Britton, M.P. & Bodmer, W.F. The ABC of APC. Hum. Mol. Genet. 10, 721–733 (2001).

    Article  CAS  Google Scholar 

  2. Tucker, M., Goldstein, A., Dean, M. & Knudson, A. National Cancer Institute Workshop: the phakomatoses revisited. J. Natl. Cancer Inst. 92, 530–533 (2000).

    Article  CAS  Google Scholar 

  3. Shoemaker, A.R., Gould, K.A., Luongo, C., Moser, A.R. & Dove, W.F. Studies of neoplasia in the Min mouse. Biochim. Biophys. Acta 1332, F25–F48 (1997).

    CAS  PubMed  Google Scholar 

  4. Luongo, C., Moser, A.R., Gledhill, S. & Dove, W.F. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 54, 5947–5952 (1994).

    CAS  PubMed  Google Scholar 

  5. Shoemaker, A.R. et al. A resistant genetic background leading to incomplete penetrance of intestinal neoplasia and reduced loss of heterozygosity in ApcMin/+ mice. Proc. Natl. Acad. Sci. USA 95, 10826–10831 (1998).

    Article  CAS  Google Scholar 

  6. Haigis, K.M., Caya, J.G., Reichelderfer, M. & Dove, W.F. Intestinal adenomas can develop with a stable karyotype and stable microsatellites. Proc. Natl. Acad. Sci. USA 99, 8927–8931 (2002).

    Article  CAS  Google Scholar 

  7. Robertson, W.M.R.B. Chromosome studies. I. Taxonomic relationship shown in the chromosomes of Tettegidae and Acrididiae: V-shaped chromosomes and their significance in Acrididiae, Locustidae and Grillidae: chromosome variations. J. Morphol. 27, 179–331 (1916).

    Article  Google Scholar 

  8. Gropp, A. et al. Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenet. Cell Genet. 34, 67–77 (1982).

    Article  CAS  Google Scholar 

  9. Lane, P.W. & Eicher, E.M. Location of plucked (pk) on chromosome 18 of the mouse. J. Hered. 76, 476–477 (1985).

    Article  CAS  Google Scholar 

  10. Eppig, J.T. & Eicher, E.M. Analysis of recombination in the centromere region of mouse chromosome 7 using ovarian teratoma and backcross methods. J. Hered. 79, 425–429 (1988).

    Article  CAS  Google Scholar 

  11. Wallace, B.M.N., Searle, J.B. & Everett, C.A. Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between “simple” Robertsonian heterozygotes and homozygotes. Cytogenet. Cell Genet. 61, 211–220 (1992).

    Article  CAS  Google Scholar 

  12. Davisson, M.T. & Akeson, E.C. Recombination suppression by heterozygous Robertsonian chromosomes in the mouse. Genetics 133, 649–667 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunnett, C.W. Pairwise multiple comparisons in homogeneous variance, unequal sample size case. J. Am. Stat. Assn. 75, 789–795 (1980).

    Article  Google Scholar 

  14. Falconer, D.S. & Mackay, T.F.C. Introduction to Quantitative Genetics (Longman, Harlow, Essex, 1996).

    Google Scholar 

  15. Shoemaker, A.R. et al. Mlh1 deficiency enhances several phenotypes of ApcMin/+ mice. Oncogene 19, 2774–2779 (2000).

    Article  CAS  Google Scholar 

  16. Gould, K.A., Dietrich, W.F., Borenstein, N., Lander, E.S. & Dove, W.F. Mom1 is a semi-dominant modifier of intestinal adenoma size and multiplicity in Min/+ mice. Genetics 144, 1769–1776 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cormier, R.T. & Dove, W.F. Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min-1 (AKR) resistance allele. Cancer Res. 60, 3965–3970 (2000).

    CAS  PubMed  Google Scholar 

  18. Merritt, A.J., Gould, K.A. & Dove, W.F. Polyclonal structure of intestinal adenomas in ApcMin/+ mice with concomitant loss of Apc+ from all tumor lineages. Proc. Natl. Acad. Sci. USA 94, 13927–13931 (1997).

    Article  CAS  Google Scholar 

  19. Novelli, M.R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272, 1187–1190 (1996).

    Article  CAS  Google Scholar 

  20. Shao, C., Stambrook, P.J. & Tischfield, J.A. Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nat. Genet. 28, 169–172 (2001).

    Article  CAS  Google Scholar 

  21. Rothstein, R., Michel, B. & Gangloff, S. Replication fork pausing and recombination or “gimme a break.” Genes Dev. 14, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  22. Kuzminov, A. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8461–8468 (2001).

    Article  CAS  Google Scholar 

  23. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26, 424–429 (2000).

    Article  CAS  Google Scholar 

  24. Morrison, C. et al. Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat. Genet. 17, 479–482 (1997).

    Article  CAS  Google Scholar 

  25. Shao, C. et al. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Proc. Natl. Acad. Sci. USA 97, 7405–7410 (2000).

    Article  CAS  Google Scholar 

  26. Johnson, R.D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    Article  CAS  Google Scholar 

  27. Turker, M.S. et al. Solid tissues removed from ATM homozygous deficient mice do not exhibit a mutator phenotype for second-step autosomal mutations. Cancer Res. 59, 4781–4783 (1999).

    CAS  PubMed  Google Scholar 

  28. de Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321–330 (1995).

    Article  CAS  Google Scholar 

  29. Merriam, J.R. & Garcia-Bellido, A. A model for somatic pairing derived from somatic crossing over with third chromosome rearrangements in Drosophila melanogaster. Mol. Gen. Genet. 115, 294–301 (1972).

    Article  CAS  Google Scholar 

  30. Garcia-Bellido, A. & Wandosell, F. The effect of inversions on mitotic recombination in Drosophila melanogaster. Mol. Gen. Genet. 161, 317–321 (1978).

    Article  CAS  Google Scholar 

  31. Silver, L.M. & Artzt, K. Recombination suppression of mouse t-haplotypes due to chromatin mismatching. Nature 290, 68–70 (1981).

    Article  CAS  Google Scholar 

  32. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  Google Scholar 

  33. Marx, J. Debate surges over the origin of genomic defects in cancer. Science 297, 544–546 (2002).

    Article  CAS  Google Scholar 

  34. Nielsen, J. & Wohlert, M. Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum. Genet. 87, 81–83 (1991).

    Article  CAS  Google Scholar 

  35. Frydman, N. et al. Assisting reproduction of infertile men carrying a Robertsonian translocation. Hum. Reprod. 16, 2274–2277 (2001).

    Article  CAS  Google Scholar 

  36. Brasch, J.M. & Smith, D.R. Absence of silver bands in human Robertsonian translocation chromosomes. Cytogenet. Cell Genet. 24, 122–125 (1979).

    Article  CAS  Google Scholar 

  37. Hagstrom, S.A. & Dryja, T.P. Mitotic recombination map of 13cen–13q14 derived from an investigation of loss of heterozygosity in retinoblastoma. Proc. Natl. Acad. Sci. USA 96, 2952–2957 (1999).

    Article  CAS  Google Scholar 

  38. Harbour, J.W. Molecular basis of low-penetrance retinoblastoma. Arch. Ophthalmol. 119, 1699–1704 (2001).

    Article  CAS  Google Scholar 

  39. Shaffer, L.G. & Lupski, J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet. 34, 297–329 (2000).

    Article  CAS  Google Scholar 

  40. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  41. Davisson, M.T. & Akeson, E.C. An improved method for preparing G-banded chromosomes from mouse peripheral blood. Cytogenet. Cell Genet. 45, 70–74 (1987).

    Article  CAS  Google Scholar 

  42. Jacoby, R.F. et al. A juvenile polyposis tumor suppressor locus at 10q22 is deleted from non-epithelial cells in the lamina propria. Gastroenterology 112, 1398–1403 (1997).

    Article  CAS  Google Scholar 

  43. Bridger, J.M., Herrmann, H., Münkel, C. & Lichter, P. Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J. Cell Sci. 111, 1241–1253 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of G. Pontecorvo, who insisted long ago on the importance of somatic recombination for mammalian genetics. The authors thank M. Haigis, L. Clipson, N. Drinkwater, A. Shedlovsky, R. Halberg and I. Riegel for critical reading of the manuscript; M. Newton for the statistical analysis in Web Note A; D. Threadgill for insightful discourse; C. Alexander for the gift of mouse embryonic fibroblasts; and J. Weeks and H. Edwards for histological preparations. This work was supported by grants from the US National Cancer Institute. K.M.H. was supported by a predoctoral training grant from the US National Institutes of Health. This is publication No. 3607 from the Laboratory of Genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Dove.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haigis, K., Dove, W. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat Genet 33, 33–39 (2003). https://doi.org/10.1038/ng1055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing