Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome

Abstract

Heterozygous deletions of 17p13.3 result in the human neuronal migration disorders isolated lissencephaly sequence (ILS) and the more severe Miller–Dieker syndrome (MDS). Mutations in PAFAH1B1 (the gene encoding LIS1) are responsible for ILS and contribute to MDS, but the genetic causes of the greater severity of MDS are unknown. Here, we show that the gene encoding 14-3-3ε (YWHAE), one of a family of ubiquitous phosphoserine/threonine–binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes. 14-3-3ε binds to CDK5/p35-phosphorylated NUDEL and this binding maintains NUDEL phosphorylation. Similar to LIS1, deficiency of 14-3-3ε results in mislocalization of NUDEL and LIS1, consistent with reduction of cytoplasmic dynein function. These results establish a crucial role for 14-3-3ε in neuronal development by sustaining the effects of CDK5 phosphorylation and provide a molecular explanation for the differences in severity of human neuronal migration defects with 17p13.3 deletions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extent of deletion and brain phenotype of individuals with ILS and MDS.
Figure 2: Production and phenotype of 14-3-3ε-mutant mice.
Figure 3: BrdU birthdating analysis identifies neuronal migration defects in 14-3-3ε-deficient mice.
Figure 4: Genetic link between Ywhae and Pafah1b1 during cortical and hippocampal migration.
Figure 5: Interaction of 14-3-3ε with NUDEL.
Figure 6: 14-3-3ε sustains NUDEL phosphorylation and protects it from phosphatase.
Figure 7: 14-3-3ε is important for normal localization of NUDEL, LIS1 and β-COP.

Similar content being viewed by others

References

  1. Dobyns, W.B., Reiner, O., Carrozzo, R. & Ledbetter, D.H. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. J. Am. Med. Assoc. 270, 2838–2842 (1993).

    Article  CAS  Google Scholar 

  2. Dobyns, W.B., Curry, C.J., Hoyme, H.E., Turlington, L. & Ledbetter, D.H. Clinical and molecular diagnosis of Miller–Dieker syndrome. Am. J. Hum. Genet. 48, 584–594 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dobyns, W.B., Elias, E.R., Newlin, A.C., Pagon, R.A. & Ledbetter, D.H. Causal heterogeneity in isolated lissencephaly. Neurology 42, 1375–1388 (1992).

    Article  CAS  Google Scholar 

  4. Ledbetter, S.A., Kuwano, A., Dobyns, W.B. & Ledbetter, D.H. Microdeletions of chromosome 17p13 as a cause of isolated lissencephaly. Am. J. Hum. Genet. 50, 182–189 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chong, S.S. et al. A revision of the lissencephaly and Miller–Dieker syndrome critical regions in chromosome 17p13.3. Hum. Mol. Genet. 6, 147–155 (1997).

    Article  CAS  Google Scholar 

  6. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  7. Lo Nigro, C. et al. Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller–Dieker syndrome. Hum. Mol. Genet. 6, 157–164 (1997).

    Article  CAS  Google Scholar 

  8. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  9. Gambello, M.J. et al. Multiple dose dependent effects of Lis1 on cerebral cortical development. J. Neurosci. 23, 1719–1729 (2003).

    Article  CAS  Google Scholar 

  10. Cahana, A. et al. Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc. Natl. Acad. Sci. USA 98, 6429–6434 (2001).

    Article  CAS  Google Scholar 

  11. Wynshaw-Boris, A. & Gambello, M.J. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15, 639–651 (2001).

    Article  CAS  Google Scholar 

  12. Gupta, A., Tsai, L.-H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nat. Rev. Genet. 3, 342–355 (2002).

    Article  CAS  Google Scholar 

  13. Morris, R.N. Nuclear migration: from fungi to the mammalian brain. J. Cell Biol. 148, 1097–1101 (2000).

    Article  CAS  Google Scholar 

  14. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  Google Scholar 

  15. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  Google Scholar 

  16. Oshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11173–11178 (1996).

    Article  Google Scholar 

  17. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    Article  CAS  Google Scholar 

  18. Pilz, D.T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    Article  CAS  Google Scholar 

  19. Cardoso, C. et al. The location and type of mutation predict malformation severity in isolated lissencephaly caused by abnormalities within the LIS1 gene. Hum. Mol. Genet. 9, 3019–3028 (2000).

    Article  CAS  Google Scholar 

  20. Fu, H., Subramanian, R.R. & Masters, S.C. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647 (2000).

    Article  CAS  Google Scholar 

  21. Muslin, A.J. & Xing, H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell. Signal. 12, 703–709 (2000).

    Article  CAS  Google Scholar 

  22. Tzivion, G. & Avruch, J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem. 277, 3061–3064 (2002).

    Article  CAS  Google Scholar 

  23. Muslin, A.J., Tanner, J.W., Allen, P.M. & Shaw, A.S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 (1996).

    Article  CAS  Google Scholar 

  24. Yaffe, M.B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    Article  CAS  Google Scholar 

  25. Cardoso, C. et al. Refinement of a 400 kb critical region allows genotypic differentiation between isolated lissencephaly, Miller–Dieker syndrome and other phenotypes secondary to deletions of 17p13.3. Am. J. Hum. Genet. 72, 918–930 (2003).

    Article  CAS  Google Scholar 

  26. Bermingham, J. et al. Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev. 10, 1751–1762 (1996).

    Article  CAS  Google Scholar 

  27. Fleck, M.W. et al. Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J. Neurosci. 20, 2439–2450 (2000).

    Article  CAS  Google Scholar 

  28. Huang, D., Patrick, G., Moffat, J., Tsai, L.H. & Andrews, B. Mammalian Cdk5 is a functional homologue of the budding yeast Pho85 cyclin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 96, 14445–14450 (1999).

    Article  CAS  Google Scholar 

  29. Floyd, S.R. et al. Amphiphysin 1 binds the cyclin-dependent kinase (cdk) regulatory subunit p35 and is phosphorylated by dck5 and cdk2. J. Biol. Chem. 276, 8104–8110 (2001).

    Article  CAS  Google Scholar 

  30. Smith, D.S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775 (2000).

    Article  CAS  Google Scholar 

  31. Yan, X. et al. Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol. Cell Biol. 23, 1239–1250 (2003).

    Article  CAS  Google Scholar 

  32. Vincenz, C. & Dixit, V.M. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J. Biol. Chem. 271, 20029–20034 (1996).

    Article  CAS  Google Scholar 

  33. Van Der Hoeven, P.C., Van Der Wal, J.C., Ruurs, P., Van Dijk, M.C. & Van Blitterswijk, J. 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem. J. 345, 297–306 (2000).

    Article  CAS  Google Scholar 

  34. Chang, H.C. & Rubin, G.M. 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev. 11, 1132–1139 (1997).

    Article  CAS  Google Scholar 

  35. Broadie, K., Rushton, E., Skoulakis, E.M. & Davis, R.L. Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function. Neuron 19, 391–402 (1997).

    Article  CAS  Google Scholar 

  36. Skoulakis, E.M. & Davis, R.L. Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron 17, 931–944 (1996).

    Article  CAS  Google Scholar 

  37. Faulkner, N.E. et al. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat. Cell Biol. 2, 784–791 (2000).

    Article  CAS  Google Scholar 

  38. Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat. Cell Biol. 2, 776–783 (2000).

    Article  CAS  Google Scholar 

  39. Feng, Y. et al. Interactions between LIS1 and mNudE, a central component of the centrosome, are required for CNS lamination. Neuron 28, 665–679 (2000).

    Article  CAS  Google Scholar 

  40. Veeranna et al. Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. J. Neurochem. 64, 2681–2690 (1995).

    Article  CAS  Google Scholar 

  41. Sontag, E. et al. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron 17, 1201–1207 (1996).

    Article  CAS  Google Scholar 

  42. Price, N.E., Wadzinski, B. & Mumby, M.C. An anchoring factor targets protein phosphatase 2A to brain microtubules. Brain Res. Mol. Brain Res. 73, 68–77 (1999).

    Article  CAS  Google Scholar 

  43. Sontag, E. et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J. Biol. Chem. 274, 25490–25498 (1999).

    Article  CAS  Google Scholar 

  44. Lin, F.C. & Arndt, K.T. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and entry into mitosis. EMBO J. 14, 2745–2759 (1995).

    Article  CAS  Google Scholar 

  45. Gotz, J., Probst, A., Ehler, E., Hemmings, B. & Kues, W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Cα. Proc. Natl. Acad. Sci. USA 95, 12370–12375 (1998).

    Article  CAS  Google Scholar 

  46. Feller, S. et al. Physiological signals and oncogenesis mediated through Crk family adapter proteins. J. Cell Physiol. 177, 535–552 (1998).

    Article  CAS  Google Scholar 

  47. Tsuda, M., Tanaka, S., Sawa, H., Hanafusa, H. & Nagashima, K. Signaling adaptor protein v-Crk activates rho and regulates cell motility in 3Y1 rat fibroblast cell line. Cell. Growth Differ. 13, 131–139 (2002).

    CAS  PubMed  Google Scholar 

  48. Weinstein, D.E., Dobrenis, K. & Birge, R.B. Targeted expression of an oncogenic adaptor protein v-Crk potentiates axonal growth in dorsal root ganglia and motor neurons in vivo. Brain Res. Dev. Brain Res. 116, 29–39 (1999).

    Article  CAS  Google Scholar 

  49. Hirotsune, S. et al. Genomic organization of the murine Miller–Dieker/lissencephaly region: conservation of linkage with the human region. Genome Res. 7, 625–634 (1997).

    Article  CAS  Google Scholar 

  50. Sontag, E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell. Signal. 13, 7–16 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank P. LaPorte and J. Chung for technical support; J. Gleeson, M.G. Rosenfeld and M. Muramatsu for reagents and for providing valuable suggestions and discussion; and S. Hisanaga for providing baculoviruses of CDK5 and p35. A.W-B., D.H.L. and W.B.D. were supported by grants from the US National Institutes of Neurological Diseases and Stroke, an institutional grant from the Howard Hughes Medical Institute and University of California San Diego School of Medicine funds. S.H. was supported by PRESTO, Japan Science and Technology Corporation. M.J.G. was a physician research fellow of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinji Hirotsune or Anthony Wynshaw-Boris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyo-oka, K., Shionoya, A., Gambello, M. et al. 14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome. Nat Genet 34, 274–285 (2003). https://doi.org/10.1038/ng1169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing