Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction

Abstract

Mitotic chromosome segregation is facilitated by the cohesin complex, which maintains physical connections between sister chromatids until anaphase. Meiotic cell division is considerably more complex, as cohesion must be released sequentially to facilitate orderly segregation of chromosomes at both meiosis I and meiosis II. This necessitates meiosis-specific cohesin components; recent studies in rodents suggest that these influence chromosome behavior during both cell division and meiotic prophase1,2. To elucidate the role of the meiosis-specific cohesin SMC1β (encoded by Smc1l2) in oogenesis, we carried out meiotic studies of female SMC1β-deficient mice. Our results provide the first direct evidence that SMC1β acts as a chiasma binder in mammals, stabilizing sites of exchange until anaphase. Additionally, our observations support the hypothesis that deficient cohesion is an underlying cause of human age-related aneuploidy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prophase cells from wild-type and SMC1β-deficient oocytes.
Figure 2: Loss of cohesion is evident at the time of chromosome condensation in oocytes from SMC1β-deficient females.
Figure 3: Meiotic chromosomes from SMC1β-deficient females show further skewing of chiasmata placement and loss of cohesion with age.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Eijpe, M., Offenberg, H., Jessberger, R., Revenkova, E. & Heyting, C. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J. Cell Biol. 160, 657–670 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Revenkova, E. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat. Cell Biol. 6, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Uhlmann, F. The mechanism of sister chromatid cohesion. Exp. Cell Res. 296, 80–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Gruber, S., Haering, C.H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Nasmyth, K., Peters, J.M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Petronczki, M., Siomos, M.F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Parisi, S. et al. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol. Cell. Biol. 19, 3515–3528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prieto, I. et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat. Cell Biol. 3, 761–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Revenkova, E., Eijpe, M., Heyting, C., Gross, B. & Jessberger, R. Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell. Biol. 21, 6984–6998 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lamb, N.E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14, 400–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Lynn, A., Ashley, T. & Hassold, T. Variation in human meiotic recombination. Annu. Rev. Genomics Hum. Genet. 5, 317–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Chan, R.C. et al. Chromosome cohesion is regulated by a clock gene paralogue TIM-1. Nature 423, 1002–1009 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lynn, A. et al. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296, 2222–2225 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, F. et al. Human male recombination maps for individual chromosomes. Am. J. Hum. Genet. 74, 521–531 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maguire, M.P. Letter: The need for a chiasma binder. J. Theor. Biol. 48, 485–487 (1974).

    Article  CAS  PubMed  Google Scholar 

  16. Bickel, S.E., Orr-Weaver, T.L. & Balicky, E.M. The sister-chromatid cohesion protein ORD is required for chiasma maintenance in Drosophila oocytes. Curr. Biol. 12, 925–929 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Buonomo, S.B. et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103, 387–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Pellestor, F., Andreo, B., Arnal, F., Humeau, C. & Demaille, J. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum. Genet. 112, 195–203 (2003).

    PubMed  Google Scholar 

  19. Wolstenholme, J. & Angell, R.R. Maternal age and trisomy–a unifying mechanism of formation. Chromosoma 109, 435–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Angell, R. First-meiotic-division nondisjunction in human oocytes. Am. J. Hum. Genet. 61, 23–32 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henderson, S.A. & Edwards, R.G. Chiasma frequency and maternal age in mammals. Nature 218, 22–28 (1968).

    Article  CAS  PubMed  Google Scholar 

  22. Polani, P.E. & Jagiello, G.M. Chiasmata, meiotic univalents, and age in relation to aneuploid imbalance in mice. Cytogenet. Cell Genet. 16, 505–529 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Haering, C.H. et al. Structure and stability of cohesin's Smc1-kleisin interaction. Mol. Cell 15, 951–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Prieto, I. et al. Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res. 12, 197–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kouznetsova, A., Novak, I., Jessberger, R. & Hoog, C. SYCP2 and SYCP3 are required for cohesin core integrity at diplotene but not for centromere cohesion at the first meiotic division. J. Cell Sci. 118, 2271–2278 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Hogan, B., Constantini, F. & Lacey, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  27. Tarkowski, A.K. An air-drying method for chromosome preparations from mouse eggs. Cytogenetics 5, 394–400 (1966).

    Article  Google Scholar 

  28. Hodges, C.A. & Hunt, P.A. Simultaneous analysis of chromosomes and chromosome-associated proteins in mammalian oocytes and embryos. Chromosoma 111, 165–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Rasmussen, R. Quantification on the LightCycler instrument. in Rapid Cycle Real-Time PCR: Methods and Applications (eds. Meuer, S., Wittwer, C. & Nakagawara, K.) 21–34 (Springer, Heidelberg, Germany, 2001).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank T. Ashley and S. Varmuza for supplying antibodies for these studies. This work was supported by grants from the US National Institutes of Health (P.A.H., T.J.H. and R.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A Hunt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Scoring of recombination events (MLH1 foci and chiasmata) in wildtype and Smc1β−/− oocytes. (PDF 334 kb)

Supplementary Fig. 2

Example of methodology used to compare relative position of DNA sequences on the SC and on condensed chromosomes. (PDF 84 kb)

Supplementary Fig. 3

Quantitative RT-PCR of Smc1β RNA in different aged wildtype oocytes. (PDF 155 kb)

Supplementary Table 1

Placement of MLH1 foci and chiasmata with respect to BAC probes on the X chromosome. (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodges, C., Revenkova, E., Jessberger, R. et al. SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37, 1351–1355 (2005). https://doi.org/10.1038/ng1672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing