Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1

Abstract

Tight regulation of transcription factors, such as PU.1, is crucial for generation of all hematopoietic lineages. We previously reported that mice with a deletion of an upstream regulatory element (URE) of the gene encoding PU.1 (Sfpi1) developed acute myeloid leukemia. Here we show that the URE has an essential role in orchestrating the dynamic PU.1 expression pattern required for lymphoid development and tumor suppression. URE deletion ablated B2 cells but stimulated growth of B1 cells in mice. The URE was a PU.1 enhancer in B cells but a repressor in T cell precursors. TCF transcription factors coordinated this repressor function and linked PU.1 to Wnt signaling. Failure of appropriate PU.1 repression in T cell progenitors with URE deletion disrupted differentiation and induced thymic transformation. Genome-wide DNA methylation assessment showed that epigenetic silencing of selective tumor suppressor genes completed PU.1-initiated transformation of lymphoid progenitors with URE deletion. These results elucidate how a single transcription factor, PU.1, through the cell context–specific activity of a key cis-regulatory element, affects the development of multiple cell lineages and can induce cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The URE selectively controls PU.1 expression.
Figure 2: B2 cell progenitor formation requires URE enhancer function.
Figure 3: Enhanced B1 cell growth in UREΔ mice.
Figure 4: URE repressor function is important for early thymocyte maturation.
Figure 5: TCF transcription factors and β-catenin direct URE activity.
Figure 6: T cell lymphomas in UREΔ mice.
Figure 7: Promoter hypermethylation in UREΔ mice silences Id4 in lymphoid but not myeloid tumors.

Similar content being viewed by others

References

  1. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  2. Rothstein, T.L. Cutting edge commentary: two B-1 or not to be one. J. Immunol. 168, 4257–4261 (2002).

    Article  CAS  Google Scholar 

  3. Berland, R. & Wortis, H.H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  Google Scholar 

  4. Herzenberg, L.A. B-1 cells: the lineage question revisited. Immunol. Rev. 175, 9–22 (2000).

    Article  CAS  Google Scholar 

  5. Tenen, D.G., Hromas, R., Licht, J.D. & Zhang, D.E. Transcription factors, normal myeloid development, and leukemia. Blood 90, 489–519 (1997).

    CAS  Google Scholar 

  6. Orkin, S.H. Diversification of haematopoietic stem cells to specific lineages. Nat. Rev. Genet. 1, 57–64 (2000).

    Article  CAS  Google Scholar 

  7. Moreau-Gachelin, F., Tavitian, A. & Tambourin, P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331, 277–280 (1988).

    Article  CAS  Google Scholar 

  8. Moreau-Gachelin, F. et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol. Cell. Biol. 16, 2453–2463 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  9. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  10. McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  11. Kim, H.G. et al. The ETS-family transcription factor, PU.1, is necessary for the maintenance of fetal liver hematopoietic stem cells. Blood 104, 3894–3900 (2004).

    Article  CAS  Google Scholar 

  12. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  13. Anderson, M.K., Weiss, A.H., Hernandez-Hoyos, G., Dionne, C.J. & Rothenberg, E.V. Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16, 285–296 (2002).

    Article  CAS  Google Scholar 

  14. DeKoter, R.P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441 (2000).

    Article  CAS  Google Scholar 

  15. Dahl, R. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat. Immunol. 4, 1029–1036 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  16. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 36, 624–630 (2004).

    Article  CAS  Google Scholar 

  17. Rosenbauer, F., Koschmieder, S., Steidl, U. & Tenen, D.G. Effect of transcription factor concentrations on leukemic stem cells. Blood 106, 1519–1524 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  18. Li, Y. et al. Regulation of the PU.1 gene by distal elements. Blood 98, 2958–2965 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  19. Okuno, Y. et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol. Cell. Biol. 25, 2832–2845 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  20. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  21. Morris, D.L. & Rothstein, T.L. Abnormal transcription factor induction through the surface immunoglobulin M receptor of B-1 lymphocytes. J. Exp. Med. 177, 857–861 (1993).

    Article  CAS  Google Scholar 

  22. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  23. Stall, A.M. et al. Ly-1 B-cell clones similar to human chronic lymphocytic leukemias routinely develop in older normal mice and young autoimmune (New Zealand Black-related) animals. Proc. Natl. Acad. Sci. USA 85, 7312–7316 (1988).

    Article  CAS  Google Scholar 

  24. Ceredig, R. & Rolink, T. A positive look at double-negative thymocytes. Nat. Rev. Immunol. 2, 888–897 (2002).

    Article  CAS  Google Scholar 

  25. Balciunaite, G., Ceredig, R. & Rolink, A.G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential. Blood 105, 1930–1936 (2005).

    Article  CAS  Google Scholar 

  26. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  27. van de, W.M., de Lau, W. & Clevers, H. WNT signaling and lymphocyte development. Cell 109 Suppl, S13–S19 (2002).

    Article  Google Scholar 

  28. Amaravadi, L. & Klemsz, M.J. DNA methylation and chromatin structure regulate PU.1 expression. DNA Cell Biol. 18, 875–884 (1999).

    Article  CAS  Google Scholar 

  29. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    Article  CAS  Google Scholar 

  30. Watanabe, S. et al. Accessibility to tissue-specific genes from methylation profiles of mouse brain genomic DNA. Electrophoresis 16, 218–226 (1995).

    Article  CAS  Google Scholar 

  31. Yu, L. et al. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat. Genet. 37, 265–274 (2005).

    Article  CAS  Google Scholar 

  32. Yu, L. et al. A NotI-EcoRV promoter library for studies of genetic and epigenetic alterations in mouse models of human malignancies. Genomics 84, 647–660 (2004).

    Article  CAS  Google Scholar 

  33. Singh, H., Medina, K.L. & Pongubala, J.M. Gene Regulatory Networks Special Feature: Contingent gene regulatory networks and B cell fate specification. Proc. Natl. Acad. Sci. USA 102, 4949–4953 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  34. Fischer, G.M. et al. Splenic and peritoneal B-1 cells differ in terms of transcriptional and proliferative features that separate peritoneal B-1 from splenic B-2 cells. Cell. Immunol. 213, 62–71 (2001).

    Article  CAS  Google Scholar 

  35. Caligaris-Cappio, F., Gobbi, M., Bofill, M. & Janossy, G. Infrequent normal B lymphocytes express features of B-chronic lymphocytic leukemia. J. Exp. Med. 155, 623–628 (1982).

    Article  CAS  Google Scholar 

  36. Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  37. Schilham, M.W. et al. Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. 161, 3984–3991 (1998).

    CAS  Google Scholar 

  38. Boxer, R.B., Jang, J.W., Sintasath, L. & Chodosh, L.A. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577–586 (2004).

    Article  CAS  Google Scholar 

  39. Costello, J.F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet. 24, 132–138 (2000).

    Article  CAS  Google Scholar 

  40. Suzuki, M. et al. Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene (in the press).

  41. Chan, A.S. et al. Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma. Oncogene 22, 6946–6953 (2003).

    Article  CAS  Google Scholar 

  42. Andres-Barquin, P.J., Hernandez, M.C. & Israel, M.A. Id4 expression induces apoptosis in astrocytic cultures and is down-regulated by activation of the cAMP-dependent signal transduction pathway. Exp. Cell Res. 247, 347–355 (1999).

    Article  CAS  Google Scholar 

  43. Hanson, P., Mathews, V., Marrus, S.H. & Graubert, T.A. Enhanced green fluorescent protein targeted to the Sca-1 (Ly-6A) locus in transgenic mice results in efficient marking of hematopoietic stem cells in vivo. Exp. Hematol. 31, 159–167 (2003).

    Article  CAS  Google Scholar 

  44. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  45. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  46. Rosenbauer, F. et al. pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood 103, 4294–4301 (2004).

    Article  CAS  Google Scholar 

  47. Holnthoner, W. et al. Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J. Biol. Chem. 277, 45847–45853 (2002).

    Article  CAS  Google Scholar 

  48. Kobayashi, S. et al. Calpain-mediated X-linked inhibitor of apoptosis degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. J. Biol. Chem. 277, 33968–33977 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  49. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  50. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Martens and K. Geary for their assistance in animal husbandry; T. Dayaram and C. Hetherington for help with the real time PCRs; Y.Z. Wu for help with RLGS analysis; J. Tigges and V. Toxavidis for assistance with multicolor flow cytometry; H. Clevers, R. Grosschedl, T. Reya, H. Singh, G. Nolan and J.C. Zuniga-Pflucker for reagents; and H. Clevers, M. Ye, T. Graf, A. Ebralidze and other members of the laboratory of D.G.T. for discussions and sharing of unpublished information. This work was supported by National Institutes of Health grants to T.L.R., C.P. and D.G.T. and by fellowships from the Lymphoma Research Foundation to F.R., from the American Cancer Society to B.M.O. and from the Dr. Mildred Scheel Foundation for Cancer Research to U.S. and B.H. Immunohistochemical methodology was supported by the Specialized Histopathology Core Lab of the Dana Farber/Harvard Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Rosenbauer or Daniel G Tenen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Reduction of fetal liver B cell progenitors in UREΔ/Δ mice. (PDF 76 kb)

Supplementary Fig. 2

Gating example of GFP+/CFP+ double transduced cells. (PDF 18 kb)

Supplementary Fig. 3

Decreasing Wnt-signaling activity during T cell maturation. (PDF 16 kb)

Supplementary Fig. 4

Lymphomas are transplantable into non-irradiated NOD/SCID recipient mice. (PDF 417 kb)

Supplementary Table 1

Genes identified by cloning lost RLGS fragments (PDF 7 kb)

Supplementary Table 2

Oligonucleotide primers and probes used for real-time RT-PCR. (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenbauer, F., Owens, B., Yu, L. et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat Genet 38, 27–37 (2006). https://doi.org/10.1038/ng1679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing