Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous DNA breakage in single living Escherichia coli cells

A Corrigendum to this article was published on 01 September 2007

This article has been updated

Abstract

Spontaneous DNA breakage is predicted to be a frequent, inevitable consequence of DNA replication and is thought to underlie much of the genomic change that fuels cancer and evolution1,2,3. Despite its importance, there has been little direct measurement of the amounts, types, sources and fates of spontaneous DNA lesions in living cells. We present a direct, sensitive flow cytometric assay in single living Escherichia coli cells for DNA lesions capable of inducing the SOS DNA damage response, and we report its use in quantification of spontaneous DNA double-strand breaks (DSBs). We report efficient detection of single chromosomal DSBs and rates of spontaneous breakage 20- to 100-fold lower than predicted. In addition, we implicate DNA replication in the origin of spontaneous DSBs with the finding of fewer spontaneous DSBs in a mutant with altered DNA polymerase III. The data imply that spontaneous DSBs induce genomic changes and instability 20–100 times more potently than previously appreciated. Finally, FACS demonstrated two main cell fates after spontaneous DNA damage: viability with or without resumption of proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steady-state levels of spontaneous RecB-dependent SOS induction demonstrate the presence of spontaneous DSBs and/or DSEs in a small cell subpopulation.
Figure 2: Efficient SOS induction by chromosomal DSBs.
Figure 3: Induction of the LexA regulon of the SOS response is required for survival of cells (as determined by colony formation) with induced DSBs.
Figure 4: Reduction of spontaneous SOS induction from DSEs in cells having DNA Pol III with altered function.

Similar content being viewed by others

Change history

  • 29 August 2007

    In the version of this article initially published, our estimate of the rate of formation of spontaneous DNA double-strand breaks (DSBs) in E. coli proportional to DNA content in humans should read that it differs from that of Vilenchik and Knudson (Proc. Natl. Acad. Sci. USA 100, 12871–12876; 2003) by fourfold, not 'approximately tenfold' (page 800, line 3, and page 800, line 59). We estimated that there are 0.01 DSBs per E. coli genome replication. Because E. coli has approximately 4.7 x 106 bp per genome (Blattner, F.R. et al., Science 277, 1453–1474; 1997), we estimate that approximately 2 x 10–9 DSBs per bp are replicated, or about fourfold fewer than the estimate of about 0.8 x 10–8 DSBs per bp replicated in human somatic cells (or 50 DSBs per diploid human genome replication) from Vilenchik and Knudson (Proc. Natl. Acad. Sci. USA 100, 12871–12876; 2003). This would bring the number of DSBs per human genome replication down to approximately 13, if it were proportional to that in E. coli. Our error arose from calculating the human equivalent based on haploid, not diploid, human genome size. This error has been corrected in the HTML and PDF versions of the article.

References

  1. Cox, M.M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vilenchik, M.M. & Knudson, A.G. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl. Acad. Sci. USA 100, 12871–12876 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friedberg, E.C. et al. DNA Repair and Mutagenesis (American Society for Microbiology, Washington, D.C., 2005).

    Google Scholar 

  5. Eichler, E.E. & Sankoff, D. Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. McCool, J.D. et al. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53, 1343–1357 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Ponder, R.G., Fonville, N.C. & Rosenberg, S.M. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol. Cell 19, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Withers, H.L. & Bernander, R. Characterization of dnaC2 and dnaC28 mutants by flow cytometry. J. Bacteriol. 180, 1624–1631 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis, L.K., Harlow, G.R., Gregg-Jolly, L.A. & Mount, D.W. Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli . J. Mol. Biol. 241, 507–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Kadyk, L.C. & Hartwell, L.H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae . Genetics 132, 387–402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson, R.D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, X., Liu, X., Possoz, C. & Sherratt, D.J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bates, D. & Kleckner, N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121, 899–911 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frame, R. & Bishop, J.O. The number of sex-factors per chromosome in Escherichia coli . Biochem. J. 121, 93–103 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bowater, R. & Doherty, A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2, e8 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pellicioli, A., Lee, S.E., Lucca, C., Foiani, M. & Haber, J.E. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7, 293–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Rothstein, R., Michel, B. & Gangloff, S. Replication fork pausing and recombination or “gimme a break”. Genes Dev. 14, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  19. Fijalkowska, I.J., Dunn, R.L. & Schaaper, R.M. Mutants of Escherichia coli with increased fidelity of DNA replication. Genetics 134, 1023–1030 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McKenzie, G.J., Lee, P.L., Lombardo, M.J., Hastings, P.J. & Rosenberg, S.M. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell 7, 571–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Michel, B., Grompone, G., Flores, M.J. & Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl. Acad. Sci. USA 101, 12783–12788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Campisi, J. Suppressing cancer: the importance of being senescent. Science 309, 886–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Robu, M.E., Inman, R.B. & Cox, M.M. RecA protein promotes the regression of stalled replication forks in vitro . Proc. Natl. Acad. Sci. USA 98, 8211–8218 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amor-Gueret, M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 236, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Slack, A., Thornton, P.C., Magner, D.B., Rosenberg, S.M. & Hastings, P.J. On the mechanism of gene amplification induced under stress in Escherichia coli . PLoS Genet. 2, e48 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sat, B., Reches, M. & Engelberg-Kulka, H. The Escherichia coli mazEF suicide module mediates thymineless death. J. Bacteriol. 185, 1803–1807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stewart, E.J., Madden, R., Paul, G. & Taddei, F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3, e45 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nystrom, T. Aging in bacteria. Curr. Opin. Microbiol. 5, 596–601 (2002).

    Article  PubMed  Google Scholar 

  29. Watve, M., Parab, S., Jogdand, P. & Keni, S. Aging may be a conditional strategic choice and not an inevitable outcome for bacteria. Proc. Natl. Acad. Sci. USA 103, 14831–14835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sincock, S.A. & Robinson, J.P. Flow cytometric analysis of microorganisms. Methods Cell Biol. 64, 511–537 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Baylor College of Medicine Flow Cytometry Core and S.A. Sincock and J.P. Robinson (Purdue Cytometry Laboratories) for help with flow cytometry; P.J. Hastings, D.B. Magner, S. Plon and G. Weinstock for discussions and D. Bates, A. Bielinsky, M.M. Cox, C. Herman, M.N. Hersh, G. Ira, M.-J. Lombardo, G.J. McKenzie, X. Pan, R. Rothstein and J.D. Wang for comments on the manuscript. This work was supported by a US Department of Defense Breast Cancer Research Program predoctoral fellowship (J.M.P.) and by US National Institutes of Health grants R01-GM53158 and R01-CA85777, equally.

Author information

Authors and Affiliations

Authors

Contributions

S.M.R. conceived the study; J.M.P. and S.M.R. designed the study, analyzed the data and wrote the paper and J.M.P. performed the experiments.

Corresponding author

Correspondence to Susan M Rosenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

One chromosome in most dnaA46(TS) cells at the restrictive temperature. (PDF 52 kb)

Supplementary Fig. 2

Chronic SOS induction in dnaA46(TS) cells. (PDF 54 kb)

Supplementary Fig. 3

Similar frequencies of spontaneous SOS induction during early, mid- and late-logarithmic phases of growth. (PDF 53 kb)

Supplementary Fig. 4

Low frequencies of inviable, propidium iodide-stained cells among spontaneously SOS-induced green cells. (PDF 78 kb)

Supplementary Table 1

E. coli K12 strains. (PDF 151 kb)

Supplementary Methods (PDF 183 kb)

Supplementary Note (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennington, J., Rosenberg, S. Spontaneous DNA breakage in single living Escherichia coli cells. Nat Genet 39, 797–802 (2007). https://doi.org/10.1038/ng2051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing