Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Systematic screen for human disease genes in yeast

Abstract

High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease1. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans2. Many mitochondrial diseases remain unexplained, however, in part because only 40–60% of the presumed 700–1,000 proteins involved in mitochondrial function and biogenesis have been identified3. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants4,5,6 to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Categorization of the whole genome according to phenotypes associated with gene deletions.
Figure 2: Verification of mitochondrial candidates by import.
Figure 3: Distinction between mitochondrial and cytoplasmic pathway branches: glycolysis above and TCA cycle and mitochondrial respiratory chain below.
Figure 4: Human mitochondrial-related genes that give rise to disease and for which there is an associated quantitative deletion phenotype in yeast.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Foury, F. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10 (1997).

    Article  CAS  Google Scholar 

  2. DiMauro, S. & Schon, E.A. Nuclear power and mitochondrial disease. Nature Genet. 19, 214–215 (1998).

    Article  CAS  Google Scholar 

  3. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  4. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  5. Birrell, G.W., Giaever, G., Chu, A.M., Davis, R.W. & Brown, J.M. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc. Natl Acad. Sci. USA 98, 12608–12613 (2001).

    Article  CAS  Google Scholar 

  6. Ooi, S.L., Shoemaker, D.D. & Boeke, J.D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    Article  CAS  Google Scholar 

  7. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genet. 14, 450–456 (1996).

    Article  CAS  Google Scholar 

  8. Tzagoloff, A. & Myers, A.M. Genetics of mitochondrial biogenesis. Annu. Rev. Biochem. 55, 249–285 (1986).

    Article  CAS  Google Scholar 

  9. Yaffe, M.P. in Methods in Enzymology Vol. 194 (eds Guthrie, C. & Fink, G.R.) 627–643 (Academic Press, San Diego, California, 1991).

    Google Scholar 

  10. Scharfe, C. et al. MITOP, the mitochondrial proteome database: 2000 update. Nucleic Acids Res. 28, 155–158 (2000).

    Article  CAS  Google Scholar 

  11. Grivell, L.A. et al. Mitochondrial assembly in yeast. FEBS Lett. 452, 57–60 (1999).

    Article  CAS  Google Scholar 

  12. Wood, V., Rutherford, K.M., Ivens, A., Rajandream, M.A. & Barrell, B. A re-annotation of the Saccharomyces cerevisiae genome. Comp. Funct. Genom. 2, 143–154 (2001).

    Article  CAS  Google Scholar 

  13. Claros, M.G. & Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996).

    Article  CAS  Google Scholar 

  14. Andersson, S.G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  Google Scholar 

  15. Schwikowski, B., Uetz, P. & Fields, S. A network of protein–protein interactions in yeast. Nature Biotechnol. 18, 1257–1261 (2000).

    Article  CAS  Google Scholar 

  16. Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719 (2002).

    Article  CAS  Google Scholar 

  17. Nishino, I., Spinazzola, A. & Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283, 689–692 (1999).

    Article  CAS  Google Scholar 

  18. Ashe, M.P., De Long, S.K. & Sachs, A.B. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11, 833–848 (2000).

    Article  CAS  Google Scholar 

  19. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  20. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  21. Boguski, M.S. & Schuler, G.D. ESTablishing a human transcript map. Nature Genet. 10, 369–371 (1995).

    Article  CAS  Google Scholar 

  22. Mewes, H.W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000).

    Article  CAS  Google Scholar 

  23. Hentati, A. et al. Linkage of 'pure' autosomal recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Hum. Mol. Genet. 3, 1263–1267 (1994).

    Article  CAS  Google Scholar 

  24. Christodoulou, K. et al. Mapping of the second Friedreich's ataxia (FRDA2) locus to chromosome 9p23–p11: evidence for further locus heterogeneity. Neurogenetics 3, 127–132 (2001).

    Article  CAS  Google Scholar 

  25. Kerrison, J.B. et al. Genetic heterogeneity of dominant optic atrophy, Kjer type: identification of a second locus on chromosome 18q12.2–12.3. Arch. Ophthalmol. 117, 805–810 (1999).

    Article  CAS  Google Scholar 

  26. Assink, J.J. et al. A gene for X-linked optic atrophy is closely linked to the Xp11.4–Xp11.2 region of the X chromosome. Am. J. Hum. Genet. 61, 934–939 (1997).

    Article  CAS  Google Scholar 

  27. Priest, J.M., Fischbeck, K.H., Nouri, N. & Keats, B.J. A locus for axonal motor-sensory neuropathy with deafness and mental retardation maps to Xq24–q26. Genomics 29, 409–412 (1995).

    Article  CAS  Google Scholar 

  28. McMullan, T.F., Collins, A.R., Tyers, A.G. & Robinson, D.O. A novel X-linked dominant condition: X-linked congenital isolated ptosis. Am. J. Hum. Genet. 66, 1455–1460 (2000).

    Article  CAS  Google Scholar 

  29. Malmgren, H. et al. Linkage mapping of a severe X-linked mental retardation syndrome. Am. J. Hum. Genet. 52, 1046–1052 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Mindrinos, E. Allen, T. Neklesa, Q. Wang, W. Neupert and T. Meitinger for helpful advice and M. Trebo for help with preparing the supplementary website. This work was supported by the US National Institutes of Health (P.J.O. and R.W.D.) and the Bundesministerium für Bildung und Forschung (H.P.). L.M.S. was supported as a Howard Hughes Medical Institute predoctoral fellow and C.S. as a Deutsche Forschungsgemeinschaft postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lars M. Steinmetz or Curt Scharfe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, L., Scharfe, C., Deutschbauer, A. et al. Systematic screen for human disease genes in yeast. Nat Genet 31, 400–404 (2002). https://doi.org/10.1038/ng929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing