Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The NALP3 inflammasome is involved in the innate immune response to amyloid-β

Abstract

The fibrillar peptide amyloid-β (Aβ) has a chief function in the pathogenesis of Alzheimer's disease. Interleukin 1β (IL-1β) is a key cytokine in the inflammatory response to Aβ. Insoluble materials such as crystals activate the inflammasome formed by the cytoplasmic receptor NALP3, which results in the release of IL-1β. Here we identify the NALP3 inflammasome as a sensor of Aβ in a process involving the phagocytosis of Aβ and subsequent lysosomal damage and release of cathepsin B. Furthermore, the IL-1β pathway was essential for the microglial synthesis of proinflammatory and neurotoxic factors, and the inflammasome, caspase-1 and IL-1β were critical for the recruitment of microglia to exogenous Aβ in the brain. Our findings suggest that activation of the NALP3 inflammasome is important for inflammation and tissue damage in Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibrillar Aβ induces the caspase-1-dependent release of interleukin-1β.
Figure 2: Fibrillar Aβ activates the NALP3 inflammasome.
Figure 3: Phagocytosis of Aβ is necessary for IL-1β release and induces lysosomal damage.
Figure 4: Lysosomal damage triggers the release of cathepsin B, which is involved in the IL-1β pathway.
Figure 5: Aβ-induced expression of proinflammatory and chemotactic factors is mediated by caspase-1 activation in microglia.
Figure 6: IL-1-mediated pathways contribute to microglial activation induced by Aβ in vivo.

Similar content being viewed by others

References

  1. Weiner, H.L. & Frenkel, D. Immunology and immunotherapy of Alzheimer's disease. Nat. Rev. Immunol. 6, 404–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Meyer-Luehmann, M. et al. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451, 720–724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simard, A.R., Soulet, D., Gowing, G., Julien, J.P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Itagaki, S., McGeer, P.L., Akiyama, H., Zhu, S. & Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173–182 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Akama, K.T. & Van Eldik, L.J. β-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β- and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor- and NFκB-inducing kinase-dependent signaling mechanism. J. Biol. Chem. 275, 7918–7924 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Griffin, W.S. et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86, 7611–7615 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blum-Degen, D. et al. Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci. Lett. 202, 17–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Dinarello, C.A. A signal for the caspase-1 inflammasome free of TLR. Immunity 26, 383–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amstad, P.A. et al. Detection of caspase activation in situ by fluorochrome-labeled caspase inhibitors. Biotechniques 31, 608–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain 128, 1778–1789 (2005).

    Article  PubMed  Google Scholar 

  18. Mueller-Steiner, S. et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron 51, 703–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hook, V.Y., Kindy, M. & Hook, G. Inhibitors of cathepsin B Improve memory and reduce β-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, β-secretase site of the amyloid precursor protein. J. Biol. Chem. 283, 7745–7753 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Buttle, D.J., Murata, M., Knight, C.G. & Barrett, A.J. CA074 methyl ester: a proinhibitor for intracellular cathepsin B. Arch. Biochem. Biophys. 299, 377–380 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Xie, Z. et al. Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J. Neurosci. 22, 3484–3492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Combs, C.K., Karlo, J.C., Kao, S.C. & Landreth, G.E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179–1188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mariathasan, S. & Monack, D.M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Li, M., Pisalyaput, K., Galvan, M. & Tenner, A.J. Macrophage colony stimulatory factor and interferon-γ trigger distinct mechanisms for augmentation of β-amyloid-induced microglia-mediated neurotoxicity. J. Neurochem. 91, 623–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. El Khoury, J.B. et al. CD36 mediates the innate host response to β-amyloid. J. Exp. Med. 197, 1657–1666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weldon, D.T. et al. Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci. 18, 2161–2173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kanneganti, T.D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Ishii, K.J., Coban, C. & Akira, S. Manifold mechanisms of Toll-like receptor-ligand recognition. J. Clin. Immunol. 25, 511–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Frackowiak, J. et al. Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce β-amyloid fibrils. Acta Neuropathol. 84, 225–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Cataldo, A.M., Barnett, J.L., Pieroni, C. & Nixon, R.A. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased β-amyloidogenesis. J. Neurosci. 17, 6142–6151 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, A.J., Chandswangbhuvana, D., Margol, L. & Glabe, C.G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1–42 pathogenesis. J. Neurosci. Res. 52, 691–698 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kummer, J.A. et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J. Histochem. Cytochem. 55, 443–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Boraschi, D. & Tagliabue, A. The interleukin-1 receptor family. Vitam. Horm. 74, 229–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Shaftel, S.S. et al. Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J. Clin. Invest. 117, 1595–1604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richard, K.L., Filali, M., Prefontaine, P. & Rivest, S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β 1–42 and delay the cognitive decline in a mouse model of Alzheimer's disease. J. Neurosci. 28, 5784–5793 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tahara, K. et al. Role of toll-like receptor signalling in Aβ uptake and clearance. Brain 129, 3006–3019 (2006).

    Article  PubMed  Google Scholar 

  38. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Halangk, W. et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, K.J. et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem. 277, 47373–47379 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Severa, M., Coccia, E.M. & Fitzgerald, K.A. Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1. J. Biol. Chem. 281, 26188–26195 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lehnardt, S. et al. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J. Immunol. 177, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Roberson, S.M. & Walker, W.S. Immortalization of cloned mouse splenic macrophages with a retrovirus containing the v-raf/mil and v-myc oncogenes. Cell. Immunol. 116, 341–351 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R. & Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27, 229–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Qi, Y., Wang, J.K., McMillian, M. & Chikaraishi, D.M. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MyD88-deficient mice were provided by S. Akira (University of Osaka) and caspase-1-deficient mice were provided by A. Hise (Case Western Reserve University). We thank A. Cerny and J. Boulanger for animal husbandry and care, and K. Wozniak and S. Zhou for advice. Supported by the German Academic Exchange Office (A.H.), a European Union Marie Curie Fellowship (G.C.P.), the German Science Foundation (V.H.) and the US National Institutes of Health (GM54060 and AI065483 to D.T.G. and E.L.; AG20255 to K.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T Golenbock.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 (PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halle, A., Hornung, V., Petzold, G. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 9, 857–865 (2008). https://doi.org/10.1038/ni.1636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing