Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin

Abstract

Inflammasomes are cytosolic multiprotein complexes that sense microbial infection and trigger cytokine production and cell death. However, the molecular components of inflammasomes and what they sense remain poorly defined. Here we demonstrate that 35 amino acids of the carboxyl terminus of flagellin triggered inflammasome activation in the absence of bacterial contaminants or secretion systems. To further elucidate the host flagellin-sensing pathway, we generated mice deficient in the intracellular sensor Naip5. These mice failed to activate the inflammasome in response to the 35 amino acids of flagellin or in response to Legionella pneumophila infection. Our data clarify the molecular basis for the cytosolic response to flagellin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C terminus of flagellin is necessary and sufficient to trigger Ipaf- and caspase-1-dependent macrophage death.
Figure 2: The cytotoxic C terminus of flagellin is highly conserved and is distinct from the region sensed by TLR5.
Figure 3: Leucine residues in the C terminus of L. pneumophila flagellin are critical for inflammasome activation.
Figure 4: Naip5 is required for the activation of caspase-1 and release of IL-1β induced by L. pneumophila.
Figure 5: Naip5 is required for the restriction of L. pneumophila replication in macrophages.
Figure 6: Function of Naip5 in the recognition of L. pneumophila, S. typhimurium and P. aeruginosa.

Similar content being viewed by others

References

  1. Fink, S.L. & Cookson, B.T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Boyden, E.D. & Dietrich, W.F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Faustin, B. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25, 713–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kanneganti, T.D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Marina-Garcia, N. et al. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J. Immunol. 180, 4050–4057 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cassel, S.L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci. USA 105, 9035–9040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amer, A. et al. Regulation of Legionella phagosome maturation and infection through flagellin and host IPAF. J. Biol. Chem. 281, 35217–35223 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Miao, E.A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Molofsky, A.B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F. & Vance, R.E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mariathasan, S. & Monack, D.M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Sutterwala, F.S., Ogura, Y. & Flavell, R.A. The inflammasome in pathogen recognition and inflammation. J. Leukoc. Biol. 82, 259–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Sutterwala, F.S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Damiano, J.S., Oliveira, V., Welsh, K. & Reed, J.C. Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem. J. 381, 213–219 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zamboni, D.S. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7, 318–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lamkanfi, M. et al. The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J. Immunol. 178, 8022–8027 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Miao, E.A., Ernst, R.K., Dors, M., Mao, D.P. & Aderem, A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl. Acad. Sci. USA 105, 2562–2567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eckelman, B.P., Salvesen, G.S. & Scott, F.L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davoodi, J., Lin, L., Kelly, J., Liston, P. & MacKenzie, A.E. Neuronal apoptosis-inhibitory protein does not interact with Smac and requires ATP to bind caspase-9. J. Biol. Chem. 279, 40622–40628 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Maier, J.K. et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7. J. Neurosci. 22, 2035–2043 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Am., A.O. & Swanson, M. S. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell. Microbiol. 7, 765–778 (2005).

    Article  Google Scholar 

  37. Fortier, A., de Chastellier, C., Balor, S. & Gros, P. Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila. Cell. Microbiol. 9, 910–923 (2006).

    Article  PubMed  Google Scholar 

  38. Watarai, M. et al. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med. 194, 1081–1096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, K.D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, Y.H., Rolan, H.G. & Tsolis, R.M. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype typhimurium. J. Biol. Chem. 282, 33897–33901 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur. J. Immunol. 37, 3030–3039 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, H., Tschopp, J. & Lin, S.C. Smac mimetics and TNFα: a dangerous liaison? Cell 131, 655–658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liston, P., Fong, W.G. & Korneluk, R.G. The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22, 8568–8580 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Vince, J.E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Petrilli, V., Dostert, C., Muruve, D.A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Barton, G.M., Kagan, J.C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7, 49–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Coers, J., Vance, R.E., Fontana, M.F. & Dietrich, W.F. Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell. Microbiol. 9, 2344–2357 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Decker, T. & Lohmann-Matthes, M.L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, 61–69 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Blasi, E. et al. Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318, 667–670 (1985).

    Article  CAS  PubMed  Google Scholar 

  53. Merriam, J.J., Mathur, R., Maxfield-Boumil, R. & Isberg, R.R. Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect. Immun. 65, 2497–2501 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Goodart and M. Michelman for help in generating Naip5-deficient mice; V. Dixit and S. Mariathasan (Genentech) for Ipaf-deficient mice; K. Fitzgerald and D. Golenbock (University of Massachusetts) for immortalized B6 macrophages; C. Roy and C. Case (Yale University) for caspase-3-deficient femurs; A. Van der Velden (Stony Brook University) and M. Starnbach (Harvard Medical School) for caspase-1-deficient mice and S. typhimurium LT2 and isogenic mutants; T. Machen (University of California, Berkeley) for P. aeruginosa strain PAK; G. Barton (University of California, Berkeley) for Pam3CSK4; and D. Raulet, G. Barton, and the Barton and Vance laboratories for discussions. Supported by the Cancer Research Institute (R.E.V.), the National Institutes of Health (AI075039 and AI070739 to R.E.V.) and the Stiftelsen Olle Engkvist Byggmästare through the Swedish Research Council (J.P.).

Author information

Authors and Affiliations

Authors

Contributions

K.L.L., J.P., S.W.B., C.E.W., J.v.M., E.A.D., T.H., Y.-H.S., W.F.D., R.M.T. and R.E.V. conceived the experiments; K.L.L., J.P., S.W.B., C.E.W., J.v.M., E.A.D., T.H., Y.-H.S. and D.C. did the experiments; and all authors analyzed data and wrote or edited the manuscript.

Corresponding author

Correspondence to Russell E Vance.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lightfield, K., Persson, J., Brubaker, S. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9, 1171–1178 (2008). https://doi.org/10.1038/ni.1646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing