Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin

Abstract

Macrophage colony-stimulating factor (M-CSF) influences the proliferation and survival of mononuclear phagocytes through the receptor CSF-1R. The adaptor protein DAP12 is critical for the function of mononuclear phagocytes. DAP12-mutant mice and humans have defects in osteoclasts and microglia, as well as brain and bone abnormalities. Here we show DAP12 deficiency impaired the M-CSF-induced proliferation and survival of macrophages in vitro. DAP12-deficient mice had fewer microglia in defined central nervous system areas, and DAP12-deficient progenitors regenerated myeloid cells inefficiently after bone marrow transplantation. Signaling by M-CSF through CSF-1R induced the stabilization and nuclear translocation of β-catenin, which activated genes involved in the cell cycle. DAP12 was essential for phosphorylation and nuclear accumulation of β-catenin. Our results provide a mechanistic explanation for the many defects of DAP12-deficient mononuclear phagocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower yield of DAP12-deficient BMDM cultures.
Figure 2: Impaired proliferation of DAP12-deficient BMDMs at day 5 of culture.
Figure 3: Impaired survival of DAP12-deficient BMDMs.
Figure 4: Loss of microglia in CNS of DAP12-deficient mice.
Figure 5: Defect in bone marrow repopulation by DAP12-deficient cells.
Figure 6: DAP12 deficiency augments M-CSF-induced MAPK activation.
Figure 7: M-CSF activates the β-catenin signaling pathway in a DAP12-dependent way.
Figure 8: DAP12-mediated tyrosine phosphorylation of β-catenin involves Pyk2.

Similar content being viewed by others

References

  1. Stanley, E.R. et al. Biology and action of colony-stimulating factor-1. Mol. Reprod. Dev. 46, 4–10 (1997).

    Article  CAS  Google Scholar 

  2. Chitu, V. & Stanley, E.R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    Article  CAS  Google Scholar 

  3. Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  Google Scholar 

  4. Sherr, C.J. et al. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41, 665–676 (1985).

    Article  CAS  Google Scholar 

  5. Downing, J.R., Rettenmier, C.W. & Sherr, C.J. Ligand-induced tyrosine kinase activity of the colony-stimulating factor 1 receptor in a murine macrophage cell line. Mol. Cell. Biol. 8, 1795–1799 (1988).

    Article  CAS  Google Scholar 

  6. Sengupta, A. et al. Identification and subcellular localization of proteins that are rapidly phosphorylated in tyrosine in response to colony-stimulating factor 1. Proc. Natl. Acad. Sci. USA 85, 8062–8066 (1988).

    Article  CAS  Google Scholar 

  7. Hamilton, J.A. CSF-1 signal transduction. J. Leukoc. Biol. 62, 145–155 (1997).

    Article  CAS  Google Scholar 

  8. Yeung, Y.G. & Stanley, E.R. Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Mol. Cell. Proteomics 2, 1143–1155 (2003).

    Article  CAS  Google Scholar 

  9. Tushinski, R.J. & Stanley, E.R. The regulation of mononuclear phagocyte entry into S phase by the colony stimulating factor CSF-1. J. Cell. Physiol. 122, 221–228 (1985).

    Article  CAS  Google Scholar 

  10. Roussel, M.F. Regulation of cell cycle entry and G1 progression by CSF-1. Mol. Reprod. Dev. 46, 11–18 (1997).

    Article  CAS  Google Scholar 

  11. Tushinski, R.J. et al. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28, 71–81 (1982).

    Article  CAS  Google Scholar 

  12. Wiktor-Jedrzejczak, W. et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828–4832 (1990).

    Article  CAS  Google Scholar 

  13. Cecchini, M.G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 1357–1372 (1994).

    CAS  PubMed  Google Scholar 

  14. Kondo, Y., Lemere, C.A. & Seabrook, T.J. Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons. J. Neuroinflammation 4, 31 (2007).

    Article  Google Scholar 

  15. Wegiel, J. et al. Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice. Brain Res. 804, 135–139 (1998).

    Article  CAS  Google Scholar 

  16. Witmer-Pack, M.D. et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell Sci. 104, 1021–1029 (1993).

    PubMed  Google Scholar 

  17. Lanier, L.L. DAP10- and DAP12-associated receptors in innate immunity. Immunol. Rev. 227, 150–160 (2009).

    Article  CAS  Google Scholar 

  18. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25, 357–361 (2000).

    Article  CAS  Google Scholar 

  19. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    Article  CAS  Google Scholar 

  20. Kaifu, T. et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J. Clin. Invest. 111, 323–332 (2003).

    Article  CAS  Google Scholar 

  21. Humphrey, M.B. et al. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J. Bone Miner. Res. 19, 224–234 (2004).

    Article  CAS  Google Scholar 

  22. Nataf, S. et al. Brain and bone damage in KARAP/DAP12 loss-of-function mice correlate with alterations in microglia and osteoclast lineages. Am. J. Pathol. 166, 275–286 (2005).

    Article  CAS  Google Scholar 

  23. Paloneva, J. et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J. Exp. Med. 198, 669–675 (2003).

    Article  CAS  Google Scholar 

  24. Faccio, R., Zou, W., Colaianni, G., Teitelbaum, S.L. & Ross, F.P. High dose M-CSF partially rescues the Dap12−/− osteoclast phenotype. J. Cell. Biochem. 90, 871–883 (2003).

    Article  CAS  Google Scholar 

  25. Zou, W. et al. Syk, c-Src, the αvβ3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J. Cell Biol. 176, 877–888 (2007).

    Article  CAS  Google Scholar 

  26. Hamerman, J.A., Tchao, N.K., Lowell, C.A. & Lanier, L.L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol. 6, 579–586 (2005).

    Article  CAS  Google Scholar 

  27. Stanley, E.R. Murine bone marrow-derived macrophages. Methods Mol. Biol. 75, 301–304 (1997).

    CAS  PubMed  Google Scholar 

  28. Klappacher, G.W. et al. An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation. Cell 109, 169–180 (2002).

    Article  CAS  Google Scholar 

  29. Xaus, J. et al. Molecular mechanisms involved in macrophage survival, proliferation, activation or apoptosis. Immunobiology 204, 543–550 (2001).

    Article  CAS  Google Scholar 

  30. Owens, D.M. & Keyse, S.M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26, 3203–3213 (2007).

    Article  CAS  Google Scholar 

  31. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  Google Scholar 

  32. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 96, 5522–5527 (1999).

    Article  CAS  Google Scholar 

  33. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  34. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  Google Scholar 

  35. Lilien, J. & Balsamo, J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol. 17, 459–465 (2005).

    Article  CAS  Google Scholar 

  36. Piedra, J. et al. Regulation of β-catenin structure and activity by tyrosine phosphorylation. J. Biol. Chem. 276, 20436–20443 (2001).

    Article  CAS  Google Scholar 

  37. Wang, L. et al. 'Tuning' of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat. Immunol. 9, 186–193 (2008).

    Article  CAS  Google Scholar 

  38. Hu, X., Chen, J., Wang, L. & Ivashkiv, L.B. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J. Leukoc. Biol. 82, 237–243 (2007).

    Article  CAS  Google Scholar 

  39. van Buul, J.D., Anthony, E.C., Fernandez-Borja, M., Burridge, K. & Hordijk, P.L. Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating β-catenin tyrosine phosphorylation. J. Biol. Chem. 280, 21129–21136 (2005).

    Article  CAS  Google Scholar 

  40. Li, X., Dy, R.C., Cance, W.G., Graves, L.M. & Earp, H.S. Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase. J. Biol. Chem. 274, 8917–8924 (1999).

    Article  CAS  Google Scholar 

  41. Zou, W., Reeve, J.L., Liu, Y., Teitelbaum, S.L. & Ross, F.P. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol. Cell 31, 422–431 (2008).

    Article  CAS  Google Scholar 

  42. Pixley, F.J. & Stanley, E.R. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14, 628–638 (2004).

    Article  CAS  Google Scholar 

  43. Mocsai, A. et al. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat. Immunol. 7, 1326–1333 (2006).

    Article  CAS  Google Scholar 

  44. Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat. Immunol. 7, 1037–1047 (2006).

    Article  CAS  Google Scholar 

  45. Melcher, M. et al. Essential roles for the Tec family kinases Tec and Btk in M-CSF receptor signaling pathways that regulate macrophage survival. J. Immunol. 180, 8048–8056 (2008).

    Article  CAS  Google Scholar 

  46. Shinohara, M. et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132, 794–806 (2008).

    Article  CAS  Google Scholar 

  47. Gilfillan, S., Ho, E.L., Cella, M., Yokoyama, W.M. & Colonna, M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat. Immunol. 3, 1150–1155 (2002).

    Article  CAS  Google Scholar 

  48. Kitamura, T. et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol. 31, 1007–1014 (2003).

    Article  CAS  Google Scholar 

  49. Giurisato, E. et al. Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse. Mol. Cell. Biol. 27, 8583–8599 (2007).

    Article  CAS  Google Scholar 

  50. Chen, X. et al. A critical role for DAP10 and DAP12 in CD8+ T cell-mediated tissue damage in large granular lymphocyte leukemia. Blood 113, 3226–3234 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.M. Ornitz (Washington University School of Medicine) for the LEF-luc-pGL3 reporter plasmid; H.S. Earp III (University of North Carolina, Chapel Hill) for the plasmid encoding CRNK; T. Rolink (University of Basel) for IgM anti-CD4 and IgM anti-CD8; S. Gilfillan for critical reading of the manuscript; C. Laudanna and B. Rossi for advice on cell adhesion experiments; and Pfizer for the Pyk2 inhibitor PF 431396. Supported by the US National Institutes of Health (R01 GM077279 to M.C. and U54 AI1057160 to S.L.S.), Nobel Project Fondazione Cariplo (W.V.) and Fondazione Nocivelli (P.L.P.).

Author information

Authors and Affiliations

Authors

Contributions

K.O. and I.R.T. designed and did experiments; P.L.P., W.V., T.A. and M.M. did and interpreted immunohistochemistry experiments; E.C., I.T. and A.S.S. did and interpreted adhesion assays and confocal microscopy studies; S.L.S. and T.T. provided reagents and expression data; and M.C. directed the research and wrote the paper.

Corresponding author

Correspondence to Marco Colonna.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–2 and Supplementary Methods (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, K., Turnbull, I., Poliani, P. et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat Immunol 10, 734–743 (2009). https://doi.org/10.1038/ni.1744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing