Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development

Abstract

The classical model of hematopoiesis posits the segregation of lymphoid and myeloid lineages as the earliest fate decision. The validity of this model in the mouse has been questioned; however, little is known about the lineage potential of human progenitors. Here we provide a comprehensive analysis of the human hematopoietic hierarchy by clonally mapping the developmental potential of seven progenitor classes from neonatal cord blood and adult bone marrow. Human multilymphoid progenitors, identified as a distinct population of Thy-1neg–loCD45RA+ cells in the CD34+CD38 stem cell compartment, gave rise to all lymphoid cell types, as well as monocytes, macrophages and dendritic cells, which indicated that these myeloid lineages arise in early lymphoid lineage specification. Thus, as in the mouse, human hematopoiesis does not follow a rigid model of myeloid-lymphoid segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sorting of human progenitors.
Figure 2: Clonal analysis of candidate cord blood and bone marrow progenitor fractions.
Figure 3: Clonal analysis of human MLPs.
Figure 4: Differentiation of human progenitors into mature DCs.
Figure 5: In vivo lineage potential of human progenitors.
Figure 6: Lineage-specific gene expression in human progenitors.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Iwasaki, H. & Akashi, K. Hematopoietic developmental pathways: on cellular basis. Oncogene 26, 6687–6696 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Dick, J.E. Stem cell concepts renew cancer research. Blood 112, 4793–4807 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Mansson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).

    Article  PubMed  Google Scholar 

  7. Lai, A.Y. & Kondo, M. Asymmetrical lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. J. Exp. Med. 203, 1867–1873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol. 4, 866–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lu, M., Kawamoto, H., Katsube, Y., Ikawa, T. & Katsura, Y. The common myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T and B cells. J. Immunol. 169, 3519–3525 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Katsura, Y. Redefinition of lymphoid progenitors. Nat. Rev. Immunol. 2, 127–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Bell, J.J. & Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452, 764–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature 452, 768–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bhandoola, A., von Boehmer, H., Petrie, H.T. & Zuniga-Pflucker, J.C. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Welner, R.S., Pelayo, R. & Kincade, P.W. Evolving views on the genealogy of B cells. Nat. Rev. Immunol. 8, 95–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Manz, M.G., Miyamoto, T., Akashi, K. & Weissman, I.L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Six, E.M. et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J. Exp. Med. 204, 3085–3093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hao, Q.L. et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97, 3683–3690 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hoebeke, I. et al. T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34+CD38CD7+ common lymphoid progenitors expressing lymphoid-specific genes. Leukemia 21, 311–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Yoshikawa, Y. et al. A clonal culture assay for human cord blood lymphohematopoietic progenitors. Hum. Immunol. 60, 75–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Majeti, R., Park, C.Y. & Weissman, I.L. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1, 635–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. La Motte-Mohs, R.N., Herer, E. & Zuniga-Pflucker, J.C. Induction of T cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood (2004).

  24. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Delaney, C. et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat. Med. 16, 232–236 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ng, S.Y., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30, 493–507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Linton, P.J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nat. Immunol. 5, 133–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Krutzik, S.R. et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat. Med. 11, 653–660 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Chicha, L., Jarrossay, D. & Manz, M.G. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. J. Exp. Med. 200, 1519–1524 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arrighi, J.F., Hauser, C., Chapuis, B., Zubler, R.H. & Kindler, V. Long-term culture of human CD34+ progenitors with FLT3-ligand, thrombopoietin, and stem cell factor induces extensive amplification of a CD34CD14 and a CD34CD14+ dendritic cell precursor. Blood 93, 2244–2252 (1999).

    CAS  PubMed  Google Scholar 

  33. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3, 137–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, H. & Morse, H.C., 3rd. IRF8 regulates myeloid and B lymphoid lineage diversification. Immunol. Res. 43, 109–117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pronk, C.J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hao, Q.L. et al. Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7 lympho-myeloid thymic progenitors. Blood 111, 1318–1326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balciunaite, G., Ceredig, R., Massa, S. & Rolink, A.G.A. B220+CD117+CD19 hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur. J. Immunol. 35, 2019–2030 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nat. Immunol. 2, 83–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Payne, K.J. & Crooks, G.M. Immune-cell lineage commitment: translation from mice to humans. Immunity 26, 674–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Vinh, D.C. et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115, 1519–1529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saran, N. et al. Multiple extrathymic precursors contribute to T-cell development with different kinetics. Blood 115, 1137–1144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Furth, R. & Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Auffray, C., Sieweke, M.H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawamoto, H. & Katsura, Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol. 30, 193–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Kawamoto, H. A close developmental relationship between the lymphoid and myeloid lineages. Trends Immunol. 27, 169–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Melief, C.J. Cancer immunotherapy by dendritic cells. Immunity 29, 372–383 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Tacken, P.J., de Vries, I.J., Torensma, R. & Figdor, C.G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Moore and the obstetrics unit of Trillium Hospital for providing cord blood samples; P.A. Penttilä, S. Zhao and L. Jamieson at the SickKids-UHN Flow Cytometry Facility for sorting; and N. Iscove for critical review of the manuscript. Supported by the Canadian Institutes for Health Research (F.N. and S.D.), the Stem Cell Network of Canadian National Centres of Excellence, the Canadian Cancer Society Research Institute, the Terry Fox Foundation, Genome Canada through the Ontario Genomics Institute, the Ontario Institute for Cancer Research, the province of Ontario, the Leukemia and Lymphoma Society, Canada Research and the Ontario Ministry of Health and Long Term Care. The views expressed here do not necessarily reflect those of the Ontario Ministry of Health and Long Term Care.

Author information

Authors and Affiliations

Authors

Contributions

S.D. and F.N. designed and did experiments; S.D. wrote the manuscript; K.E. analyzed microarray data; L.T.N. did DC population expansion experiments; and P.S.O. and J.E.D. supervised the study and wrote the manuscript.

Corresponding author

Correspondence to John E Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–5 (PDF 4132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doulatov, S., Notta, F., Eppert, K. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 11, 585–593 (2010). https://doi.org/10.1038/ni.1889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing