Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis

Abstract

Cell fate depends on the interplay between chromatin regulators and transcription factors. Here we show that activity of the Mi-2β nucleosome-remodeling and histone-deacetylase (NuRD) complex was controlled by the Ikaros family of lymphoid lineage–determining proteins. Ikaros, an integral component of the NuRD complex in lymphocytes, tethered this complex to active genes encoding molecules involved in lymphoid differentiation. Loss of Ikaros DNA-binding activity caused a local increase in chromatin remodeling and histone deacetylation and suppression of lymphoid cell–specific gene expression. Without Ikaros, the NuRD complex also redistributed to transcriptionally poised genes that were not targets of Ikaros (encoding molecules involved in proliferation and metabolism), which induced their reactivation. Thus, release of NuRD from Ikaros regulation blocks lymphocyte maturation and mediates progression to a leukemic state by engaging functionally opposing epigenetic and genetic networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition of the NuRD complex in primary DP thymocytes.
Figure 2: Genome-wide mapping of the Ikaros-NuRD complex in permissive chromatin and transcriptionally active genes.
Figure 3: Loss of Ikaros results in a gain in enrichment for Mi-2β in chromatin and chromatin remodeling, and histone deacetylation by Mi-2β.
Figure 4: Targeting of the Mi-2β–NuRD complex to a lymphoid cell–specific gene network.
Figure 5: Gene-ontology pathway analysis of gene targets of Mi-2β.
Figure 6: Loss of Ikaros-mediated effects on gene expression demonstrates two functionally opposite mechanisms of NuRD-dependent transcriptional regulation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Roh, T.Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19, 542–552 (2005).

    Article  CAS  Google Scholar 

  2. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  Google Scholar 

  3. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    Article  CAS  Google Scholar 

  4. Tong, J.K., Hassig, C.A., Schnitzler, G.R., Kingston, R.E. & Schreiber, S.L. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395, 917–921 (1998).

    Article  CAS  Google Scholar 

  5. Zhang, Y., LeRoy, G., Seelig, H.P., Lane, W.S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    Article  CAS  Google Scholar 

  6. Ho, L. & Crabtree, G.R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  Google Scholar 

  7. Kim, J. et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).

    Article  CAS  Google Scholar 

  8. O'Neill, D.W. et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell. Biol. 20, 7572–7582 (2000).

    Article  CAS  Google Scholar 

  9. Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat. Rev. Immunol. 2, 162–174 (2002).

    Article  CAS  Google Scholar 

  10. Yoshida, T., Ng, S.Y., Zuniga-Pflucker, J.C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).

    Article  CAS  Google Scholar 

  11. Ng, S.Y., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30, 493–507 (2009).

    Article  CAS  Google Scholar 

  12. Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

    Article  CAS  Google Scholar 

  13. Winandy, S., Wu, P. & Georgopoulos, K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299 (1995).

    Article  CAS  Google Scholar 

  14. Wang, J.H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    Article  CAS  Google Scholar 

  15. Dumortier, A. et al. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol. Cell. Biol. 26, 209–220 (2006).

    Article  CAS  Google Scholar 

  16. Gómez-del Arco, P. et al. Alternative promoter usage at the Notch1 locus supports ligand-independent signaling in T cell development and leukemogenesis. Immunity 24, 685–698 (2010).

    Article  Google Scholar 

  17. Williams, C.J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity 20, 719–733 (2004).

    Article  CAS  Google Scholar 

  18. Naito, T., Gomez-Del Arco, P., Williams, C.J. & Georgopoulos, K. Antagonistic interactions between Ikaros and the chromatin remodeler Mi-2β determine silencer activity and Cd4 gene expression. Immunity 27, 723–734 (2007).

    Article  CAS  Google Scholar 

  19. Avitahl, N. et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 10, 333–343 (1999).

    Article  CAS  Google Scholar 

  20. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  Google Scholar 

  21. Koipally, J. & Georgopoulos, K. A molecular dissection of the repression circuitry of Ikaros. J. Biol. Chem. 277, 27697–27705 (2002).

    Article  CAS  Google Scholar 

  22. Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–242 (1963).

    Article  Google Scholar 

  23. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  24. Roh, T.Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl. Acad. Sci. USA 103, 15782–15787 (2006).

    Article  CAS  Google Scholar 

  25. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  26. Molnár, A. & Georgopoulos, K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol. Cell. Biol. 14, 8292–8303 (1994).

    Article  Google Scholar 

  27. Hahm, K. et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 12, 782–796 (1998).

    Article  CAS  Google Scholar 

  28. Hollenhorst, P.C., Shah, A.A., Hopkins, C. & Graves, B.J. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 21, 1882–1894 (2007).

    Article  CAS  Google Scholar 

  29. Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat. Immunol. 6, 1079–1086 (2005).

    Article  CAS  Google Scholar 

  30. Kee, B.L. E and ID proteins branch out. Nat. Rev. Immunol. 9, 175–184 (2009).

    Article  CAS  Google Scholar 

  31. Jones, M.E. & Zhuang, Y. Stage-specific functions of E-proteins at the beta-selection and T-cell receptor checkpoints during thymocyte development. Immunol. Res. 49, 202–215 (2011).

    Article  CAS  Google Scholar 

  32. Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat. Immunol. 11, 635–643 (2010).

    Article  CAS  Google Scholar 

  33. Gould, A. Functions of mammalian Polycomb group and trithorax group related genes. Curr. Opin. Genet. Dev. 7, 488–494 (1997).

    Article  CAS  Google Scholar 

  34. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  Google Scholar 

  35. Aichinger, E., Villar, C.B., Di Mambro, R., Sabatini, S. & Kohler, C. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23, 1047–1060 (2011).

    Article  CAS  Google Scholar 

  36. Hakimi, M.A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994–998 (2002).

    Article  CAS  Google Scholar 

  37. Wendt, K.S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  Google Scholar 

  38. Kagey, M.H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  Google Scholar 

  39. Kaufmann, C. et al. A complex network of regulatory elements in Ikaros and their activity during hemo-lymphopoiesis. EMBO J. 22, 2211–2223 (2003).

    Article  CAS  Google Scholar 

  40. Gómez-del Arco, P., Maki, K. & Georgopoulos, K. Phosphorylation controls Ikaros's ability to negatively regulate the G1-S transition. Mol. Cell. Biol. 24, 2797–2807 (2004).

    Article  Google Scholar 

  41. Gómez-del Arco, P., Koipally, J. & Georgopoulos, K. Ikaros SUMOylation: switching out of repression. Mol. Cell. Biol. 25, 2688–2697 (2005).

    Article  Google Scholar 

  42. Mavrakis, K.J. et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat. Genet. 43, 673–678 (2011).

    Article  CAS  Google Scholar 

  43. Masetti, R., Serravalle, S., Biagi, C. & Pession, A. The role of HDACs inhibitors in childhood and adolescence acute leukemias. J. Biomed. Biotechnol. 2011, 148046 (2011).

    Article  Google Scholar 

  44. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  Google Scholar 

  45. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  46. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1–25 (2004).

    Article  Google Scholar 

  47. Griffith, A.V. et al. Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation. Immunity 31, 999–1009 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Gomez for analysis of the expression of Mi-2β protein in thymocytes; the Kingston laboratory (Massachusetts General Hospital) for the hSWI-SNF complex and help with setting up the mononucleosome and 5S array assays; I. Joshi for help with cell sorting; B. Czyzewski for mouse husbandry; and B. Morgan for discussions of the project and critical review of the manuscript. Protein microsequencing was done at the Microchemistry and Proteomics Facility of Harvard University, Cambridge, and at the Taplin Mass Spectrometry Facility of Harvard Medical School, Boston, and high-throughput DNA sequencing and RNA profiling were done at the Bauer Center for Genomic Research of Harvard University, Cambridge. Supported by the US National Institutes of Health (2T32AI007529 to A.F.J.; and 5R01AI042254 and R01CA158006 to K.G.).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., A.F.J., T.N., M.D., E.J.H., J.S., F.L., M.K. and T.Y. designed and did experiments and analyzed experimental data; H.T.P. designed expression studies of wild-type thymocyte subsets and provided data for analysis; F.G. and K.G. supervised research and analyzed data; and J.Z. and K.G. wrote the manuscript.

Corresponding author

Correspondence to Katia Georgopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–2 and Methods (PDF 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Jackson, A., Naito, T. et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol 13, 86–94 (2012). https://doi.org/10.1038/ni.2150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing