Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses

Abstract

Lipid antigens trigger help from natural killer T cells (NKT cells) for B cells, and direct conjugation of lipid agonists to antigen profoundly augments antibody responses. Here we show that in vivo, NKT cells engaged in stable and prolonged cognate interactions with B cells and induced the formation of early germinal centers. Mouse and human NKT cells formed CXCR5+PD-1hi follicular helper NKT cells (NKTFH cells), and this process required expression of the transcriptional repressor Bcl-6, signaling via the coreceptor CD28 and interaction with B cells. NKTFH cells provided direct cognate help to antigen-specific B cells that was dependent on interleukin 21 (IL-21). Unlike T cell–dependent germinal centers, those driven by NKTFH cells did not generate long-lived plasma cells. Our results demonstrate the existence of a Bcl-6-dependent subset of NKT cells specialized in providing help to B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of the provision of help by NKT cells to B cells.
Figure 2: Immunization with α-GalCer induces the formation of NKTFH cells.
Figure 3: NKTFH cells localize to germinal centers.
Figure 4: Phenotypic characterization of mouse and human NKTFH cells.
Figure 5: The formation of NKTFH cells requires Bcl-6 and signaling via CD28 and B cell help.
Figure 6: The formation of SWHEL B cell–derived germinal centers as the result of cognate NKT cell–B cell interaction requiressignalin via the IL-21 receptor.
Figure 7: NKTFH cell–induced germinal centers leads to limited affinity maturation.

Similar content being viewed by others

References

  1. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Vinuesa, C.G., Tangye, S.G., Moser, B. & Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. McHeyzer-Williams, L.J., Pelletier, N., Mark, L., Fazilleau, N. & McHeyzer-Williams, M.G. Follicular helper T cells as cognate regulators of B cell immunity. Curr. Opin. Immunol. 21, 266–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl. Acad. Sci. USA 105, 8345–8350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galli, G. et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 197, 1051–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galli, G. et al. Invariant NKT cells sustain specific B cell responses and memory. Proc. Natl. Acad. Sci. USA 104, 3984–3989 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leadbetter, E.A. et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl. Acad. Sci. USA 105, 8339–8344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Godfrey, D.I., Stankovic, S. & Baxter, A.G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Tonti, E. et al. NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood 113, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gumperz, J.E., Miyake, S., Yamamura, T. & Brenner, M.B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Pellicci, D.G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1−CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Terashima, A. et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med. 205, 2727–2733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coquet, J.M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4−NK1.1− NKT cell population. Proc. Natl. Acad. Sci. USA 105, 11287–11292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michel, M.L. et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cannons, J.L. et al. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32, 253–265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barral, P. et al. CD169+ macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat. Immunol. 11, 303–312 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gammon, G. et al. The choice of T-cell epitopes utilized on a protein antigen depends on multiple factors distant from, as well as at the determinant site. Immunol. Rev. 98, 53–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Haynes, N.M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Lahoud, M.H. et al. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. 187, 842–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan, B.A. et al. Mechanisms for glycolipid antigen-driven cytokine polarization by Vα14i NKT cells. J. Immunol. 184, 141–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Phan, T.G. et al. B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 197, 845–860 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crowe, N.Y. et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171, 4020–4027 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, M.T. et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA 100, 10913–10918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerfoot, S.M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dent, A.L., Hu-Li, J., Paul, W.E. & Staudt, L.M. T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc. Natl. Acad. Sci. USA 95, 13823–13828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Linterman, M.A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung, Y. et al. A critical role of costimulation during intrathymic development of invariant NK T cells. J. Immunol. 180, 2276–2283 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Uldrich, A.P. et al. NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J. Immunol. 175, 3092–3101 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Yabas, M. et al. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat. Immunol. 12, 441–449 (2010).

    Article  Google Scholar 

  37. Kim, P.J. et al. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Matsuda, J.L. et al. T-bet concomitantly controls migration, survival, and effector functions during the development of Vα14i NKT cells. Blood 107, 2797–2805 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vinuesa, C.G. et al. Germinal centers without T cells. J. Exp. Med. 191, 485–494 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qi, H., Cannons, J.L., Klauschen, F., Schwartzberg, P.L. & Germain, R.N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Toellner, K.M. et al. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J. Exp. Med. 195, 383–389 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cunningham, A.F. et al. Salmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection. J. Immunol. 178, 6200–6207 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the US National Institutes of Health Tetramer Core Facility for the allophycocyanin-conjugated mouse CD1d–α-GalCer tetramer; M. Kronenberg (La Jolla Institute for Allergy and Immunology) for the baculovirus construct; P. Savage (Brigham Young University) for α-GalCer (PBS44); M. Taniguchi (RIKEN Research Center for Allergy and Immunology) for Jα18-deficient mice; M. Townsend for tissue sectioning; X. Hu, M. Srivastava and J. Ellyard for help with some experiments; and M. Pellegrini for infection of mice with L. monocytogenes. Supported by the Sylvia and Charles Viertel Charitable Foundation (C.G.V.), the European Commission (Seventh Framework Programme of the European Commission PIEF-GA-2008-220863 to P.B.), Cancer Research UK (F.D.B. and P.B.), the Royal Society (F.D.B.), the National Health and Medical Research Council of Australia (D.I.G., C.G.V., R.B., C.S.M. and S.G.T.) and the Australian Research Council (A.K.).

Author information

Authors and Affiliations

Authors

Contributions

P.-P.C. and P.B. designed, did and analyzed experiments and wrote the manuscript; J.F., C.S.M., A.P., A.K. and J.J.H. did experiments; V.C. and S.G.T. provided intellectual input; R.B., S.L.N. and R.B. provided reagents; D.I.G. provided reagents and intellectual input; and F.D.B. and C.G.V. contributed to the experimental design and analysis and wrote the manuscript.

Corresponding author

Correspondence to Carola G Vinuesa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 693 kb)

Supplementary Video 1

Dynamics of NKT cell help to B cells. (MOV 3520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, PP., Barral, P., Fitch, J. et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13, 35–43 (2012). https://doi.org/10.1038/ni.2166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing