Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction

Abstract

Autophagosomes delivers cytoplasmic constituents to lysosomes for degradation, whereas inflammasomes are molecular platforms activated by infection or stress that regulate the activity of caspase-1 and the maturation of interleukin 1β (IL-1β) and IL-18. Here we show that the induction of AIM2 or NLRP3 inflammasomes in macrophages triggered activation of the G protein RalB and autophagosome formation. The induction of autophagy did not depend on the adaptor ASC or capase-1 but was dependent on the presence of the inflammasome sensor. Blocking autophagy potentiated inflammasome activity, whereas stimulating autophagy limited it. Assembled inflammasomes underwent ubiquitination and recruited the autophagic adaptor p62, which assisted their delivery to autophagosomes. Our data indicate that autophagy accompanies inflammasome activation to temper inflammation by eliminating active inflammasomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of inflammasomes induces autophagy.
Figure 2: Inflammasome activation leads to partial colocalization of autophagosomes and inflammasomes.
Figure 3: The inflammasome sensor partial localizes together with autophagosomes after inflammasome activation.
Figure 4: Manipulating autophagy affects inflammasomes.
Figure 5: Beclin-1 and p62 are linked to inflammasome regulation.
Figure 6: Induction of the AIM2 inflammasome triggers polyubiquitination of ASC.
Figure 7: Inflammasome activity in primary human monocytes and macrophages can be modulated by autophagy.
Figure 8: Involvement of RalB in inflammasome-triggered autophagy.

Similar content being viewed by others

References

  1. Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Deretic, V. Autophagy in innate and adaptive immunity. Trends Immunol. 26, 523–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767–777 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmid, D. & Munz, C. Innate and adaptive immunity through autophagy. Immunity 27, 11–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bodemann, B.O. et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144, 253–267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, C.S. & Kehrl, J.H. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283, 33175–33182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delgado, M.A., Elmaoued, R.A., Davis, A.S., Kyei, G. & Deretic, V. Toll-like receptors control autophagy. EMBO J. 27, 1110–1121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007).

    CAS  PubMed  Google Scholar 

  12. Seibenhener, M.L. et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055–8068 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ponpuak, M. et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329–341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bürckstümmer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  PubMed  Google Scholar 

  19. Roberts, T.L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Lamkanfi, M. & Dixit, V.M. The inflammasomes. PLoS Pathog. 5, e1000510 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rathinam, V.A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to. Francisella tularensis Nat. Immunol. 11, 385–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Harris, J., Hope, J.C. & Lavelle, E.C. Autophagy and the immune response to TB. Transbound. Emerg. Dis. 56, 248–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, C.S. & Kehrl, J.H. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3, ra42 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Sutterwala, F.S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto, M. et al. ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells 9, 1055–1067 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Li, H. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401–411 (1998).

    Article  Google Scholar 

  33. Yang, Z. & Klionsky, D.J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Master, S.S. et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3, 224–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dupont, N. et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Sanz, L., Diaz-Meco, M.T., Nakano, H. & Moscat, J. The atypical PKC-interacting protein p62 channels NF-κB activation by the IL-1-TRAF6 pathway. EMBO J. 19, 1576–1586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wooten, M.W. et al. The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J. Biol. Chem. 280, 35625–35629 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Bortoluci, K.R. & Medzhitov, R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell. Mol. Life Sci. 67, 1643–1651 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1998).

    Article  Google Scholar 

  45. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signaling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Fernandes-Alnemri, T. & Alnemri, E.S. Assembly, purification, and assay of the activity of the ASC pyroptosome. Methods Enzymol. 442, 251–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, W. et al. Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J. Biol. Chem. 285, 1371–1383 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Mizushima (Tokyo Medical and Dental University) for LC3 cDNA; M. Rust for editorial assistance; and A. Fauci for support. Supported by the Intramural Research Program of the US National Institutes of Health (National Institute of Allergy and Infectious Diseases).

Author information

Authors and Affiliations

Authors

Contributions

C.-S.S. designed and did most of the experiments and helped write the manuscript; K.S. provided mouse macrophages and did the M. tuberculosis experiments; N.-N.H. did some of the confocal microscopy; J.K. analyzed images; M.A.-A. did the electron microscopy; K.A.F. provided the Aim2−/− cells and advice; A.S. helped in the design of several experiments and provided advice; and J.H.K. oversaw the experimental design, helped interpret the results and helped write the manuscript.

Corresponding authors

Correspondence to Chong-Shan Shi or John H Kehrl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 622 kb)

Supplementary Video 1

NLPR3 inflammasomes co-localize with GFP-LC3. (MOV 10851 kb)

Supplementary Video 2

ASC and p62 co-localization. (MOV 10769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, CS., Shenderov, K., Huang, NN. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13, 255–263 (2012). https://doi.org/10.1038/ni.2215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing