Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors

Abstract

Thymopoiesis depends on the recruitment and expansion of bone marrow–derived progenitor populations; tight regulation of these processes is required for maintenance of the homeostasis of the T lineage. Lyl-1, a transcription factor that regulates hematopoietic progenitors, is expressed in thymocyte progenitors until T cell commitment. Here we demonstrate a requirement for Lyl-1 in lymphoid specification and the maintenance of early T lineage progenitors (ETPs). Lyl-1 deficiency resulted in profound defects in the generation of lymphoid-primed multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs) and ETPs. Lyl-1-deficient ETPs and thymocyte progenitors at the CD4CD8 double-negative 2 (DN2) stage showed more apoptosis, blocked differentiation and impaired population expansion. We identified Gfi1 as a critical transcriptional target of Lyl-1-mediated lymphopoiesis of T cells. Thus, Lyl-1 is a pivotal component of a transcriptional program that controls the lymphoid specification and maintenance of ETPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lyl1 dose–dependent generation of LMPPs and ETPs.
Figure 2: Lyl-1 promotes the survival of ETPs and DN2 thymocytes.
Figure 3: Impaired T cell development of Lyl1−/− LMPPs.
Figure 4: In vivo T lineage potential of Lyl1−/− LMPPs after intrathymic transplantation.
Figure 5: Reintroduction of Lyl1 restores the T lineage fate of thymic progenitor cells.
Figure 6: Direct regulation of Gfi1 by Lyl-1.
Figure 7: Lyl-1 controls the thymocyte progenitor pool in part via regulation of Gfi1.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol. 148, 1604–1612 (1992).

    CAS  PubMed  Google Scholar 

  2. Krueger, A., Willenzon, S., Lyszkiewicz, M., Kremmer, E. & Forster, R. CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 115, 1906–1912 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Schwarz, B.A. et al. Selective thymus settling regulated by cytokine and chemokine receptors. J. Immunol. 178, 2008–2017 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Balciunaite, G., Ceredig, R. & Rolink, A.G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage, and natural killer cell but no B-lymphocyte potential. Blood 105, 1930–1936 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Petrie, H.T. & Zuniga-Pflucker, J.C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dias, S., Mansson, R., Gurbuxani, S., Sigvardsson, M. & Kee, B.L. E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29, 217–227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590–1600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kee, B.L. & Murre, C. Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med. 188, 699–713 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida, T., Ng, S.Y., Zuniga-Pflucker, J.C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Rothenberg, E.V., Zhang, J. & Li, L. Multilayered specification of the T-cell lineage fate. Immunol. Rev. 238, 150–168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rothenberg, E.V., Moore, J.E. & Yui, M.A. Launching the T-cell-lineage developmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Souroullas, G.P., Salmon, J.M., Sablitzky, F., Curtis, D.J. & Goodell, M.A. Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 4, 180–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Souroullas, G.P. & Goodell, M.A. A new allele of Lyl1 confirms its important role in hematopoietic stem cell function. Genesis 49, 441–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong, Y., Jiang, L., Hiai, H., Toyokuni, S. & Yamada, Y. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 26, 6937–6947 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Capron, C. et al. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 107, 4678–4686 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Chambers, S.M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578–591 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Visvader, J., Begley, C.G. & Adams, J.M. Differential expression of the LYL, SCL and E2A helix-loop-helix genes within the hemopoietic system. Oncogene 6, 187–194 (1991).

    CAS  PubMed  Google Scholar 

  20. Mellentin, J.D., Smith, S.D. & Cleary, M.L. lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 58, 77–83 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Ferrando, A.A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Lukov, G.L., Rossi, L., Souroullas, G.P., Mao, R. & Goodell, M.A. The expansion of T-cells and hematopoietic progenitors as a result of overexpression of the lymphoblastic leukemia gene, Lyl1 can support leukemia formation. Leuk. Res. 35, 405–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wilson, N.K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Wilson, N.K. et al. Gfi1 expression is controlled by five distinct regulatory regions spread over 100 kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 acting as upstream regulators in early hematopoietic cells. Mol. Cell. Biol. 30, 3853–3863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Yücel, R., Karsunky, H., Klein-Hitpass, L. & Moroy, T. The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J. Exp. Med. 197, 831–844 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lécuyer, E. et al. The SCL complex regulates c-Kit expression in hematopoietic cells through functional interaction with Sp1. Blood 100, 2430–2440 (2002).

    Article  PubMed  Google Scholar 

  28. Miyamoto, A., Cui, X., Naumovski, L. & Cleary, M.L. Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells. Mol. Cell. Biol. 16, 2394–2401 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kee, B.L. & Murre, C. Transcription factor regulation of B lineage commitment. Curr. Opin. Immunol. 13, 180–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Månsson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).

    Article  PubMed  Google Scholar 

  31. Beck, K., Peak, M.M., Ota, T., Nemazee, D. & Murre, C. Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci. J. Exp. Med. 206, 2271–2284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agata, Y. et al. Regulation of T cell receptor β gene rearrangements and allelic exclusion by the helix-loop-helix protein, E47. Immunity 27, 871–884 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Semerad, C.L., Mercer, E.M., Inlay, M.A., Weissman, I.L. & Murre, C. E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc. Natl. Acad. Sci. USA 106, 1930–1935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, W. & Kee, B.L. Growth factor independent 1B (Gfi1b) is an E2A target gene that modulates Gata3 in T-cell lymphomas. Blood 109, 4406–4414 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Louis, I. et al. The signaling protein Wnt4 enhances thymopoiesis and expands multipotent hematopoietic progenitors through β-catenin-independent signaling. Immunity 29, 57–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Ciofani, M. & Zuniga-Pflucker, J.C. A survival guide to early T cell development. Immunol. Res. 34, 117–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, Q. et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 16, 513–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Möröy, T. & Khandanpour, C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin. Immunol. 23, 368–378 (2011).

    Article  PubMed  Google Scholar 

  39. Bain, G. et al. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17, 4782–4791 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murre, C. Intertwining proteins in thymocyte development and cancer. Nat. Immunol. 1, 97–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, S.F. et al. Development of Notch-dependent T-cell leukemia by deregulated Rap1 signaling. Blood 111, 2878–2886 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Grimes, H.L., Gilks, C.B., Chan, T.O., Porter, S. & Tsichlis, P.N. The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death. Proc. Natl. Acad. Sci. USA 93, 14569–14573 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karsunky, H., Mende, I., Schmidt, T. & Moroy, T. High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells. Oncogene 21, 1571–1579 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Nakahata, T. & Ogawa, M. Clonal origin of murine hemopoietic colonies with apparent restriction to granuclocyte-macrophage-megakaryocyte (GMM) differentiation. J. Cell. Physiol. 111, 239–246 (1982).

    Article  CAS  PubMed  Google Scholar 

  47. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Inlay, M.A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 23, 2376–2381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.K. Brenner for comments on the manuscript; and J.C. Zuniga-Pflücker (University of Toronto) for OP9 cell lines. Supported by US National Institutes of Health (DK58192, DK092883, CA126752, P30 CA125123 and AI007495), the Dan L. Duncan Cancer Center, the UK Medical Research Council, Leukaemia and Lymphoma Research, the Dr. Mildred Scheel Foundation for Cancer Research fellowship (F.Z.) and the Cancer Prevention and Research Institute of Texas (RP101499 to F.Z.).

Author information

Authors and Affiliations

Authors

Contributions

F.Z. designed and did most of the experiments, analyzed and interpreted data and wrote the manuscript; G.P.S. and G.L.L. did experiments, provided intellectual input and contributed to the writing of the manuscript; M.R.I., M.L., U.G. and N.K.W. did experiments; B.G. analyzed and interpreted data, provided intellectual input and contributed to the writing of the manuscript; and M.A.G. provided financial support, discussed experimental design, data and interpretation, and wrote the manuscript.

Corresponding author

Correspondence to Margaret A Goodell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Tables 1–4 (PDF 2268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohren, F., Souroullas, G., Luo, M. et al. The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat Immunol 13, 761–769 (2012). https://doi.org/10.1038/ni.2365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing