Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow

Abstract

Hematopoietic stem and progenitor cells (HSPCs) are regulated by various bone marrow stromal cell types. Here we identified rare activated bone marrow monocytes and macrophages with high expression of α-smooth muscle actin (α-SMA) and the cyclooxygenase COX-2 that were adjacent to primitive HSPCs. These myeloid cells resisted radiation-induced cell death and further upregulated COX-2 expression under stress conditions. COX-2-derived prostaglandin E2 (PGE2) prevented HSPC exhaustion by limiting the production of reactive oxygen species (ROS) via inhibition of the kinase Akt and higher stromal-cell expression of the chemokine CXCL12, which is essential for stem-cell quiescence. Our study identifies a previously unknown subset of α-SMA+ activated monocytes and macrophages that maintain HSPCs and protect them from exhaustion during alarm situations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone marrow α-SMA+ macrophages are adjacent to primitive SLAM+ hematopoietic cells.
Figure 2: The α-SMA+ macrophages are migratory and respond to LPS stimulation.
Figure 3: High expression of COX-2 by α-SMA+ macrophages in the steady state maintains HSPCs.
Figure 4: COX-2 expression is transiently increased in α-SMA+ macrophages after sublethal irradiation; this results in the preservation of bone marrow primitive HSPCs.
Figure 5: The α-SMA+ macrophages maintain primitive LSK CD34ROSlo cells via COX-2 activity.
Figure 6: COX-2 activity preserves primitive HSPCs by maintaining a low abundance of ROS in an Akt-dependent manner.
Figure 7: PGE2 diminishes ROS and phosphorylated Akt in HSPCs and increases CXCL12 expression on nestin-GFP+ reticular stromal cells.

Similar content being viewed by others

References

  1. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    CAS  PubMed  Google Scholar 

  2. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  PubMed  Google Scholar 

  3. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    CAS  PubMed  Google Scholar 

  4. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  5. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    CAS  PubMed  Google Scholar 

  6. Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 3, 484–492 (2008).

    CAS  PubMed  Google Scholar 

  7. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

    CAS  PubMed  Google Scholar 

  9. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    CAS  PubMed  Google Scholar 

  10. Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  12. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2010).

    Google Scholar 

  14. Christopher, M.J., Rao, M., Liu, F., Woloszynek, J.R. & Link, D.C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med. 208, 251–260 (2010).

    Google Scholar 

  15. Winkler, I.G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    CAS  PubMed  Google Scholar 

  16. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Crofford, L.J. COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol. 24 (suppl. 49), 15–19 (1997).

    Google Scholar 

  18. Riese, J. et al. Transient expression of prostaglandin endoperoxide synthase-2 during mouse macrophage activation. J. Leukoc. Biol. 55, 476–482 (1994).

    CAS  PubMed  Google Scholar 

  19. Lorenz, M. et al. Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Exp. Hematol. 27, 1494–1502 (1999).

    CAS  PubMed  Google Scholar 

  20. Hoggatt, J., Singh, P., Sampath, J. & Pelus, L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113, 5444–5455 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gentile, P.S. & Pelus, L.M. In vivo modulation of myelopoiesis by prostaglandin E2. IV. Prostaglandin E2 induction of myelopoietic inhibitory activity. J. Immunol. 141, 2714–2720 (1988).

    CAS  PubMed  Google Scholar 

  24. Pelus, L.M. Modulation of myelopoiesis by prostaglandin E2: demonstration of a novel mechanism of action in vivo. Immunol. Res. 8, 176–184 (1989).

    CAS  PubMed  Google Scholar 

  25. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006).

    CAS  PubMed  Google Scholar 

  26. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    CAS  PubMed  Google Scholar 

  27. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  PubMed  Google Scholar 

  28. Jang, Y.Y. & Sharkis, S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tesio, M. et al. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood 117, 419–428 (2011).

    CAS  PubMed  Google Scholar 

  30. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  PubMed  Google Scholar 

  31. Magness, S.T., Bataller, R., Yang, L. & Brenner, D.A. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 40, 1151–1159 (2004).

    CAS  PubMed  Google Scholar 

  32. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Farina, C., Theil, D., Semlinger, B., Hohlfeld, R. & Meinl, E. Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int. Immunol. 16, 799–809 (2004).

    CAS  PubMed  Google Scholar 

  34. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity 34, 590–601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    CAS  PubMed  Google Scholar 

  36. Kirouac, D.C. & Zandstra, P.W. Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Curr. Opin. Biotechnol. 17, 538–547 (2006).

    CAS  PubMed  Google Scholar 

  37. Yu, Y. et al. Genetic model of selective COX2 inhibition reveals novel heterodimer signaling. Nat. Med. 12, 699–704 (2006).

    CAS  PubMed  Google Scholar 

  38. Juntilla, M.M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115, 4030–4038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lewandowski, D. et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 115, 443–452 (2010).

    CAS  PubMed  Google Scholar 

  40. Schajnovitz, A. et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol. 12, 391–398 (2011).

    CAS  PubMed  Google Scholar 

  41. Dar, A., Kollet, O. & Lapidot, T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp. Hematol. 34, 967–975 (2006).

    CAS  PubMed  Google Scholar 

  42. Goichberg, P. et al. cAMP-induced PKCζ activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood 107, 870–879 (2006).

    CAS  PubMed  Google Scholar 

  43. Goessling, W. et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8, 445–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yokota, T. et al. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells 24, 13–22 (2006).

    PubMed  Google Scholar 

  45. Huang, Y.L. et al. Thrombin induces nestin expression via the transactivation of EGFR signalings in rat vascular smooth muscle cells. Cell. Signal. 21, 954–968 (2009).

    CAS  PubMed  Google Scholar 

  46. Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Porter, R.L. & Calvi, L.M. in 52nd Annual Meeting of the American Society of Hematology Vol. 116, 181–181 (Blood, Orlando, Florida, 2010).

    Google Scholar 

  48. Hoggatt, J. et al. in 52nd Annual Meeting of the American Society of Hematology Vol. 116, 1088–1088 (Blood, Orlando, FL, 2010).

    Google Scholar 

  49. Golan, K. et al. S1P promotes murine progenitor cell egress and mobilization via S1P1 mediated ROS signaling and SDF-1 release. Blood 119, 2478–2488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G.N. Enikolopov (Cold Spring Harbor Laboratory) for nestin-GFP mice; Y. Yarden (Weizmann Institute of Science) for the 3T3 cell line; N. Iscove for guidance during the study and for critical review of the manuscript; H. Perlman for help in the characterization of myeloid cells; J. Hanna for use of the FACSAria; and D. Shafritz, J. Canaani, K. Lapid and Y. Ovadia for critical review of the manuscript. Supported by the Israeli Science Foundation (ISF 544/09), the European Commission (CELL-PID FP7-261387) and the Leona M. and Harry B. Helmsley Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

A.L. designed and did experiments, analyzed data and wrote the manuscript; T.I. and S.G.-C. helped in the design and execution of experiments and analyzed data; A.M. identified the myeloid characteristics of the α-SMA+ population; E.S. helped with the immunohistochemical staining; K.G., A.K., G.D. and A.S. helped with experiments; O.K. helped in writing the manuscript; Z.P. helped in the design and analysis of the flow cytometry–based single-cell imaging; E.V. designed and did IL-1β-related experiments; R.N.A. helped in the design of IL-1β-related experiments; D.A.B. provided α-SMA–RFP mice; S.J. provided advice and guided characterization of the α-SMA+ cells; and T.L. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Tsvee Lapidot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1794 kb)

Supplementary Video 1

Three dimensional view of α-SMA+ two cell complex adjacent to Nestin+ reticular cell. (AVI 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludin, A., Itkin, T., Gur-Cohen, S. et al. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13, 1072–1082 (2012). https://doi.org/10.1038/ni.2408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing