Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers

Abstract

Germinal centers (GCs) are sites of intense B cell proliferation and are central for T cell–dependent antibody responses. However, the role of c-Myc, a key cell-cycle regulator, in this process has been questioned. Here we identified c-Myc+ B cell subpopulations in immature and mature GCs and found, by genetic ablation of Myc, that they had indispensable roles in the formation and maintenance of GCs. The identification of these functionally critical cellular subsets has implications for human B cell lymphomagenesis, which originates mostly from GC B cells and frequently involves MYC chromosomal translocations. As these translocations are generally dependent on transcription of the recombining partner loci, the c-Myc+ GC subpopulations may be at a particularly high risk for malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enrichment for the expression of c-Myc target genes in GC B cells.
Figure 2: A fraction of both newly formed and mature GC B cells are c-Myc+.
Figure 3: Early GC B cells express both c-Myc and Bcl-6 and are hyperproliferative.
Figure 4: GC formation requires c-Myc.
Figure 5: Enforced Bcl6 expression does not restore GC formation after ablation of Myc.
Figure 6: The c-Myc+ GC B cells in mature GCs localize to the LZ and have an activated phenotype.
Figure 7: A large fraction of c-Myc+ mature GC B cells are in cell cycle, and these cells are essential for GC maintenance.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  2. Liu, Y.J., Zhang, J., Lane, P.J., Chan, E.Y. & MacLennan, I.C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. de Alboran, I.M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Vallespinós, M. et al. B Lymphocyte commitment program is driven by the proto-oncogene c-Myc. J. Immunol. 186, 6726–6736 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Shaffer, A.L. et al. Signatures of the immune response. Immunity 15, 375–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bishop, J.M. Cellular oncogenes and retroviruses. Annu. Rev. Biochem. 52, 301–354 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Meyer, N. & Penn, L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    CAS  PubMed  Google Scholar 

  9. Douglas, N.C., Jacobs, H., Bothwell, A.L. & Hayday, A.C. Defining the specific physiological requirements for c-Myc in T cell development. Nat. Immunol. 2, 307–315 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Roger, I., Kim, S.H., Griffiths, B., Sewing, A. & Land, H. Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO J. 18, 5310–5320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez-Valdez, H. et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J. Exp. Med. 183, 971–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Cutrona, G. et al. c-Myc proto-oncogene expression by germinal center B cells isolated from human tonsils. Ann. NY Acad. Sci. 815, 436–439 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Cutrona, G. et al. The propensity to apoptosis of centrocytes and centroblasts correlates with elevated levels of intracellular myc protein. Eur. J. Immunol. 27, 234–238 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Basso, K. & Dalla-Favera, R. BCL-6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv. Immunol. 105, 193–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Phan, R.T., Saito, M., Basso, K., Niu, H. & Dalla-Favera, R. BCL-6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat. Immunol. 6, 1054–1060 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Peled, J.U. et al. Requirement for cyclin D3 in germinal center formation and function. Cell Res. 20, 631–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Cato, M.H., Chintalapati, S.K., Yau, I.W., Omori, S.A. & Rickert, R.C. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol. Cell. Biol. 31, 127–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stevenson, F. et al. Insight into the origin and clonal history of B cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev. 162, 247–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Küppers, R., Klein, U., Hansmann, M.L. & Rajewsky, K. Cellular origin of human B cell lymphomas. N. Engl. J. Med. 341, 1520–1529 (1999).

    Article  PubMed  Google Scholar 

  22. Klein, U. & Dalla-Favera, R. Germinal centres: role in B cell physiology and malignancy. Nat. Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Yamane, A. et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Nussenzweig, A. & Nussenzweig, M.C. Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelly, K., Cochran, B.H., Stiles, C.D. & Leder, P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603–610 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, D., Cozma, D., Park, A. & Thomas-Tikhonenko, A. Functional validation of genes implicated in lymphomagenesis: an in vivo selection assay using a Myc-induced B cell tumor. Ann. NY Acad. Sci. 1059, 145–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Seitz, V. et al. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS ONE 6, e26837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, C.Y., Bredemeyer, A.L., Walker, L.M., Bassing, C.H. & Sleckman, B.P. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur. J. Immunol. 38, 342–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Golay, J. et al. The A-Myb transcription factor is a marker of centroblasts in vivo. J. Immunol. 160, 2786–2793 (1998).

    CAS  PubMed  Google Scholar 

  32. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    CAS  PubMed  Google Scholar 

  33. Coffey, F., Alabyev, B. & Manser, T. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 30, 599–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kitano, M. et al. Bcl-6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Casola, S. et al. Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting. Proc. Natl. Acad. Sci. USA 103, 7396–7401 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calado, D.P. et al. Constitutive canonical NF-κB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 18, 580–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cattoretti, G. et al. Deregulated BCL-6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Strasser, A. et al. Enforced BCL-2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88, 8661–8665 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nieuwenhuis, P. & Opstelten, D. Functional anatomy of germinal centers. Am. J. Anat. 170, 421–435 (1984).

    Article  CAS  PubMed  Google Scholar 

  40. Victora, G.D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grumont, R.J. & Gerondakis, S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by rel/nuclear factor κB. J. Exp. Med. 191, 1281–1292 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Saito, M. et al. A signaling pathway mediating downregulation of BCL-6 in germinal center B cells is blocked by BCL-6 gene alterations in B cell lymphoma. Cancer Cell 12, 280–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T cell-dependent B cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  PubMed  Google Scholar 

  46. Dominguez-Sola, D. et al. The cell-cycle regulator c-Myc is required for selection in the germinal center and cyclic reentry. Nat. Immunol. doi:10/1038.ni2428 (this issue).

  47. Duyao, M.P., Buckler, A.J. & Sonenshein, G.E. Interaction of an NF-κB-like factor with a site upstream of the c-myc promoter. Proc. Natl. Acad. Sci. USA 87, 4727–4731 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kepler, T.B. & Perelson, A.S. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol. Today 14, 412–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Ghitza, J. Wang, J. Grundy, J. Xia, C. Grosse, B. Wollert-Wulff and M. Bamberg for technical assistance; M. Ottaviano and M. Bezohra for administrative assistance; the Rajewsky laboratory members for critical comments and suggestions; and D. Dominguez-Sola and R. Dalla-Favera for sharing unpublished results. Supported by the National Cancer Institute (PO1CA092625 to K.R.), the Leukemia and Lymphoma Society (K.R. and D.P.C.) and the European Research Council (K.R.).

Author information

Authors and Affiliations

Authors

Contributions

D.P.C. and K.R. conceived of the work and designed experiments; D.P.C., Y.S., S.A.G., A.P., K.K., M.J. and S.R. did experiments and/or analyzed data; B.P.S. and I.M.d.A. contributed reagents; D.P.C. and K.R. supervised all aspects of the project; D.P.C. and K.R. wrote the manuscript; and all authors discussed results and edited the manuscript.

Corresponding authors

Correspondence to Dinis Pedro Calado or Klaus Rajewsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Tables 1–3 (PDF 6451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calado, D., Sasaki, Y., Godinho, S. et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol 13, 1092–1100 (2012). https://doi.org/10.1038/ni.2418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing