Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila

Abstract

How persistent viral infections are established and maintained is widely debated and remains poorly understood. We found here that the persistence of RNA viruses in Drosophila melanogaster was achieved through the combined action of cellular reverse-transcriptase activity and the RNA-mediated interference (RNAi) pathway. Fragments of diverse RNA viruses were reverse-transcribed early during infection, which resulted in DNA forms embedded in retrotransposon sequences. Those virus-retrotransposon DNA chimeras produced transcripts processed by the RNAi machinery, which in turn inhibited viral replication. Conversely, inhibition of reverse transcription hindered the appearance of chimeric DNA and prevented persistence. Our results identify a cooperative function for retrotransposons and antiviral RNAi in the control of lethal acute infection for the establishment of viral persistence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of S2p cells and their viral population.
Figure 2: Biogenesis of viral DNA forms during infection.
Figure 3: The FHV DNA form improves the antiviral response via the RNAi machinery.
Figure 4: Viral-retrotransposon DNA chimeras produce transcripts processed by the RNAi machinery.
Figure 5: The FHV DNA form is involved in viral persistence in vivo.
Figure 6: Model for the establishment and maintenance of persistent viral infection in insects.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Emerman, M. & Malik, H.S. Paleovirology–modern consequences of ancient viruses. PLoS Biol. 8, e1000301 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Goldstone, D.C. et al. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe 8, 248–259 (2010).

    CAS  PubMed  Google Scholar 

  3. Goic, B. & Saleh, M.C. Living with the enemy: viral persistent infections from a friendly viewpoint. Curr. Opin. Microbiol. 15, 531–537 (2012).

    PubMed  Google Scholar 

  4. Flegel, T.W. Update on viral accommodation, a model for host-viral interaction in shrimp and other arthropods. Dev. Comp. Immunol. 31, 217–231 (2007).

    CAS  PubMed  Google Scholar 

  5. Roekring, S., Flegel, T.W., Malasit, P. & Kittayapong, P. Challenging successive mosquito generations with a densonucleosis virus yields progressive survival improvement but persistent, innocuous infections. Dev. Comp. Immunol. 30, 878–892 (2006).

    CAS  PubMed  Google Scholar 

  6. Weaver, S.C. & Reisen, W.K. Present and future arboviral threats. Antiviral Res. 85, 328–345 (2010).

    CAS  PubMed  Google Scholar 

  7. Rechavi, O., Minevich, G. & Hobert, O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147, 1248–1256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dasgupta, R. et al. Replication of flock house virus in three genera of medically important insects. J. Med. Entomol. 44, 102–110 (2007).

    PubMed  Google Scholar 

  9. Dasgupta, R., Selling, B. & Rueckert, R. Flock house virus: a simple model for studying persistent infection in cultured Drosophila cells. Arch. Virol. (suppl. 9), 121–132 (1994).

    Google Scholar 

  10. Li, H., Li, W.X. & Ding, S.W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    CAS  PubMed  Google Scholar 

  11. Jovel, J. & Schneemann, A. Molecular characterization of Drosophila cells persistently infected with Flock House virus. Virology 419, 43–53 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ebner, P.D., Kim, S.K. & O'Callaghan, D.J. Biological and genotypic properties of defective interfering particles of equine herpesvirus 1 that mediate persistent infection. Virology 381, 98–105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsai, K.N., Tsang, S.F., Huang, C.H. & Chang, R.Y. Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection. Virus Res. 124, 139–150 (2007).

    CAS  PubMed  Google Scholar 

  14. Simon, A.E., Roossinck, M.J. & Havelda, Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu. Rev. Phytopathol. 42, 415–437 (2004).

    CAS  PubMed  Google Scholar 

  15. Huang, A.S. & Baltimore, D. Defective viral particles and viral disease processes. Nature 226, 325–327 (1970).

    CAS  PubMed  Google Scholar 

  16. Marriott, A.C. & Dimmock, N.J. Defective interfering viruses and their potential as antiviral agents. Rev. Med. Virol. 20, 51–62 (2010).

    CAS  PubMed  Google Scholar 

  17. Vodovar, N., Goic, B., Blanc, H. & Saleh, M.C. In silico reconstruction of viral genomes from small RNAs improves virus-derived small interfering RNA profiling. J. Virol. 85, 11016–11021 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Flynt, A., Liu, N., Martin, R. & Lai, E.C. Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc. Natl. Acad. Sci. USA 106, 5270–5275 (2009).

    CAS  PubMed  Google Scholar 

  19. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J.A. & Imler, J.L. Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat. Immunol. 7, 590–597 (2006).

    CAS  PubMed  Google Scholar 

  20. van Rij, R.P. et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20, 2985–2995 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X.H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Belyi, V.A., Levine, A.J. & Skalka, A.M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 6, e1001030 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Crochu, S. et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J. Gen. Virol. 85, 1971–1980 (2004).

    CAS  PubMed  Google Scholar 

  24. Geuking, M.B. et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science 323, 393–396 (2009).

    CAS  PubMed  Google Scholar 

  25. Klenerman, P., Hengartner, H. & Zinkernagel, R.M. A non-retroviral RNA virus persists in DNA form. Nature 390, 298–301 (1997).

    CAS  PubMed  Google Scholar 

  26. Maori, E., Tanne, E. & Sela, I. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 362, 342–349 (2007).

    CAS  PubMed  Google Scholar 

  27. Chiba, S. et al. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog. 7, e1002146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Horie, M. et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463, 84–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Katzourakis, A. & Gifford, R.J. Endogenous viral elements in animal genomes. PLoS Genet. 6, e1001191 (2011).

    Google Scholar 

  30. Liu, H. et al. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 84, 11876–11887 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. & Ball, L.A. Nonhomologous RNA recombination during negative-strand synthesis of flock house virus RNA. J. Virol. 67, 3854–3860 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhong, W., Dasgupta, R. & Rueckert, R. Evidence that the packaging signal for nodaviral RNA2 is a bulged stem-loop. Proc. Natl. Acad. Sci. USA 89, 11146–11150 (1992).

    CAS  PubMed  Google Scholar 

  33. Wu, Q. et al. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. Sci. USA 107, 1606–1611 (2010).

    CAS  PubMed  Google Scholar 

  34. Eickbush, T.H. & Jamburuthugoda, V.K. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 134, 221–234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Terzian, C., Pelisson, A. & Bucheton, A. Evolution and phylogeny of insect endogenous retroviruses. BMC Evol. Biol. 1, 3 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, Y. & Marsh, J.W. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293, 1503–1506 (2001).

    CAS  PubMed  Google Scholar 

  37. Saleh, M.C. et al. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458, 346–350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008).

    PubMed  Google Scholar 

  39. Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 6, e1000833 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Flegel, T.W. Hypothesis for heritable, anti-viral immunity in crustaceans and insects. Biol. Direct 4, 32 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Killip, M.J., Young, D.F., Precious, B.L., Goodbourn, S. & Randall, R.E. Activation of the β interferon promoter by paramyxoviruses in the absence of virus protein synthesis. J. Gen. Virol. 93, 299–307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Reed, L.J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 27, 493–497 (1938).

    Google Scholar 

  43. Cherry, S. & Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 5, 81–87 (2004).

    CAS  PubMed  Google Scholar 

  44. Gausson, V. & Saleh, M.C. Viral small RNA cloning and sequencing. Methods Mol. Biol. 721, 107–122 (2011).

    CAS  PubMed  Google Scholar 

  45. Vagin, V.V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Saleh, Antoniewski and Vignuzzi laboratories for discussions and technical support; M. Vignuzzi, J. Chandler and R. van Rij for critical reading of the manuscript; A. Schneemann (The Scripps Research Institute) for antibody to FHV; P. Vargas for assistance with flow cytometry; and A. Pelisson for advice on retrotransposition. Supported by the French Agence Nationale de la Recherche (ANR-09-JCJC-0045-01 to M.-C.S.), the European Research Council (FP7/2007-2013 ERC 242703 to M.-C.S. and ERC 243312 to G.C.), Institut National de la Santé et de la Recherche Médicale and the Institut National du Cancer (G.C.), the French Ministry of Research (C.M.), La Fondation ARC pour la Recherche sur le Cancer (C.M.) and the AXA Research Fund (J.A.M.).

Author information

Authors and Affiliations

Authors

Contributions

B.G. and M.-C.S. designed the experiments, discussed the interpretation of the results and wrote the manuscript; G.C. participated in interpreting the data and writing the manuscript; B.G., N.V., J.A.M. and V.G. did research; H.B. generated the genomic DNA and the small-RNA libraries; N.V. and L.F. contributed to the bioinformatics analysis; and C.M., J.V.-O. and G.C. did the in vitro analysis of the reverse-transcriptase activity and AZT inhibition.

Corresponding author

Correspondence to Maria-Carla Saleh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Table 1 (PDF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goic, B., Vodovar, N., Mondotte, J. et al. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat Immunol 14, 396–403 (2013). https://doi.org/10.1038/ni.2542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing