Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

Subjects

Abstract

Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active caspase-1 is recruited to S. aureus–containing phagosomes.
Figure 2: Phagocytosis of S. aureus triggers early activation of the NLRP3 inflammasome and caspase-1.
Figure 3: Inhibition of caspase-1 blocks the acidification of S. aureus–containing phagosomes.
Figure 4: The NLRP3 inflammasome regulates acidification of S. aureus–containing phagosomes.
Figure 5: Caspase-1 has phagosome-associated substrates that regulate pH.
Figure 6: NLRP3 inflammasome and caspase-1 regulate the pH of phagosomes containing Gram-positive but not Gram-negative bacteria.
Figure 7: Impact of caspase-1 on the function of phagosomes.

Similar content being viewed by others

References

  1. Greenberg, S. & Grinstein, S. Phagocytosis and innate immunity. Curr. Opin. Immunol. 14, 136–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Vieira, O.V., Botelho, R.J. & Grinstein, S. Phagosome maturation: aging gracefully. Biochem. J. 366, 689–704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Desjardins, M., Huber, L.A., Parton, R.G. & Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 124, 677–688 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Scott, C.C., Botelho, R.J. & Grinstein, S. Phagosome maturation: a few bugs in the system. J. Membr. Biol. 193, 137–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Stuart, L.M. & Ezekowitz, R.A. Phagocytosis: elegant complexity. Immunity 22, 539–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat. Cell Biol. 1, E183–E188 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wolf, A.J. et al. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J. Immunol. 187, 6002–6010 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Amigorena, S. & Savina, A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr. Opin. Immunol. 22, 109–117 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lukacs, G.L., Rotstein, O.D. & Grinstein, S. Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages. J. Biol. Chem. 265, 21099–21107 (1990).

    CAS  PubMed  Google Scholar 

  10. Yates, R.M., Hermetter, A. & Russell, D.G. The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6, 413–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sun-Wada, G.H., Tabata, H., Kawamura, N., Aoyama, M. & Wada, Y. Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification. J. Cell Sci. 122, 2504–2513 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Brisseau, G.F. et al. Interleukin-1 increases vacuolar-type H+-ATPase activity in murine peritoneal macrophages. J. Biol. Chem. 271, 2005–2011 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    CAS  PubMed  Google Scholar 

  15. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Underhill, D.M. & Gantner, B. Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect. 6, 1368–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Blander, J.M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Yates, R.M. & Russell, D.G. Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23, 409–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Shimada, T. et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7, 38–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grabarek, J. & Darzynkiewicz, Z. In situ activation of caspases and serine proteases during apoptosis detected by affinity labeling their enzyme active centers with fluorochrome-tagged inhibitors. Exp. Hematol. 30, 982–989 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Hackam, D.J. et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-atpases. J. Biol. Chem. 272, 29810–29820 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lukacs, G.L., Rotstein, O.D. & Grinstein, S. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ “leak. J. Biol. Chem. 266, 24540–24548 (1991).

    CAS  PubMed  Google Scholar 

  25. Steinberg, B.E., Huynh, K.K. & Grinstein, S. Phagosomal acidification: measurement, manipulation and functional consequences. Biochem. Soc. Trans. 35, 1083–1087 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Trost, M. et al. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, B., Zhang, Y. & Shacter, E. Caspase 3–mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Mol. Cell Biol. 23, 5716–5725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shao, W., Yeretssian, G., Doiron, K., Hussain, S.N. & Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282, 36321–36329 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Baniulis, D. et al. Evaluation of two anti-gp91phox antibodies as immunoprobes for Nox family proteins: mAb 54.1 recognizes recombinant full-length Nox2, Nox3 and the C-terminal domains of Nox1–4 and cross-reacts with GRP 58. Biochim. Biophys. Acta 1752, 186–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Foubert, T.R. et al. Identification of a spectrally stable proteolytic fragment of human neutrophil flavocytochrome b composed of the NH2-terminal regions of gp91(phox) and p22(phox). J. Biol. Chem. 276, 38852–38861 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Burritt, J.B., Quinn, M.T., Jutila, M.A., Bond, C.W. & Jesaitis, A.J. Topological mapping of neutrophil cytochrome b epitopes with phage-display libraries. J. Biol. Chem. 270, 16974–16980 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Ip, W.K. et al. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus. J. Immunol. 184, 7071–7081 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Mantegazza, A.R. et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112, 4712–4722 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keller, M., Ruegg, A., Werner, S. & Beer, H.D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Master, S.S. et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3, 224–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akhter, A. et al. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog. 5, e1000361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amer, A. et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217–35223 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    CAS  PubMed  Google Scholar 

  40. Lamkanfi, M. & Dixit, V.M. The inflammasomes. PLoS Pathog. 5, e1000510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herskovits, A.A., Auerbuch, V. & Portnoy, D.A. Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog. 3, e51 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9, 1407–1414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ewald, S.E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahrus, S. et al. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Akhter, A. et al. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37, 35–47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taxman, D.J., Huang, M.T. & Ting, J.P. Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8, 7–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sokolovska, A., Becker, C.E. & Stuart, L.M. Measurement of phagocytosis, phagosome acidification, and intracellular killing of Staphylococcus aureus. Curr. Protoc. Immunol. Unit14 30 (2012).

  50. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kasperkovitz, P.V., Cardenas, M.L. & Vyas, J.M. TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking. J. Immunol. 185, 7614–7622 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Savina, A., Vargas, P., Guermonprez, P., Lennon, A.M. & Amigorena, S. Measuring pH, ROS production, maturation, and degradation in dendritic cell phagosomes using cytofluorometry-based assays. Methods Mol. Biol. 595, 383–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Ramachandra, L., Boom, W.H. & Harding, C.V. Class II MHC antigen processing in phagosomes. Methods Mol. Biol. 445, 353–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Miggin, S.M. et al. NF-kappaB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc. Natl. Acad. Sci. USA 104, 3372–3377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from US National Institutes of Health National Institute of Allergy and Infectious Diseases to L.M.S. (RO1 AI079198) and K.A.F. (RO1 AI093752), National Institutes of Health National Institute on Aging to K.J.M. (RO1 AG020255), grants from the Crohns' and Colitis and Hood foundations and National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases to A.L.-H. (RO1 DK093695), and postdoctoral fellowships from Massachusetts General Hospital Executive Committee on Research to A.S. and New England Regional Center of Excellence–Biodefense and Emerging Infectious Diseases (U54 AI057159 to N.P.). Electron microscopy was performed by M. McKee in the Microscopy Core of the Center for Systems Biology.

Author information

Authors and Affiliations

Authors

Contributions

A.S., C.E.B. and W.K.E.I. designed, analyzed and performed experiments. V.A.K.R., M.B., N.P., A.T. and S.K.V. contributed to experimental design, provided discussions and assisted with experiments. K.J.M., K.A.F. and A.L.-H. contributed to data analysis, discussions and manuscript preparation. L.M.S. designed and analyzed experiments, supervised the project and prepared the manuscript with A.S. and C.E.B.

Corresponding authors

Correspondence to Anna Sokolovska or Lynda M Stuart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1097 kb)

Supplementary Table 1

List of potential phagosome-associated caspase-1 substrates. Potential caspase-1 cleavage sites in all the phagosome-associated proteins identified in ref. 26 were determined by the SitePrediction algorithm (sheet 1; http://www.dmbr.ugent.be/prx/bioit2-public/SitePrediction/). Data were filtered at 99% confidence. Potential phagosome caspase-1 substrates identified by SitePrediction were further classified by DAVID analysis to identify enriched gene functions (sheet 2). (XLS 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolovska, A., Becker, C., Ip, W. et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 14, 543–553 (2013). https://doi.org/10.1038/ni.2595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing