Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells

Abstract

Beyond its well-characterized functions in antibody diversification, the cytidine deaminase AID can catalyze off-target DNA damage and has been hypothesized to edit RNA and mediate DNA demethylation. To comprehensively examine the effects of AID on the transcriptome and the pattern of DNA methylation ('methylome'), we analyzed AID-deficient (Aicda−/−), wild-type and AID-overexpressing activated B cells by high-throughput RNA sequencing (RNA-Seq) and reduced-representation bisulfite sequencing (RRBS). These analyses confirmed the known role of AID in immunoglobulin isotype switching and also demonstrated few other effects of AID on gene expression. Additionally, we detected no evidence of AID-dependent editing of mRNA or microRNA. Finally, the RRBS data did not support the proposed role for AID in regulating DNA methylation. Thus, despite evidence of its additional activities in other systems, antibody diversification seems to be the sole physiological function of AID in activated B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AID-dependent effects on the B cell transcriptome are limited to the Igh locus.
Figure 2: AID-dependent RNA-editing events are not detectable by comparative RNA-Seq.
Figure 3: AID overexpression affects neither the abundance nor the editing of small RNA.
Figure 4: AID overexpression does not affect global DNA methylation in switching B cells.
Figure 5: No AID-dependent DNA-methylation changes are detectable in activated B cells.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  PubMed  Google Scholar 

  2. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    CAS  PubMed  Google Scholar 

  3. Gazumyan, A., Bothmer, A., Klein, I.A., Nussenzweig, M.C. & McBride, K.M. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv. Cancer Res. 113, 167–190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pavri, R. & Nussenzweig, M.C. AID targeting in antibody diversity. Adv. Immunol. 110, 1–26 (2011).

    CAS  PubMed  Google Scholar 

  5. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    CAS  PubMed  Google Scholar 

  7. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nonaka, T. et al. Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc. Natl. Acad. Sci. USA 106, 2747–2751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi, M. et al. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proc. Natl. Acad. Sci. USA 106, 22375–22380 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang, G. et al. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc. Natl. Acad. Sci. USA 110, 2246–2251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, C.L., Harper, R.A. & Wabl, M. Genome-wide somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 7352–7356 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    CAS  PubMed  Google Scholar 

  13. Shen, H.M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    CAS  PubMed  Google Scholar 

  14. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramiro, A.R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004).

    CAS  PubMed  Google Scholar 

  16. Robbiani, D.F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robbiani, D.F. et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell 36, 631–641 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Klein, I.A. et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pasqualucci, L. et al. AID is required for germinal center–derived lymphomagenesis. Nat. Genet. 40, 108–112 (2007).

    PubMed  Google Scholar 

  21. Yamane, A. et al. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Morgan, H.D., Dean, W., Coker, H.A., Reik, W. & Petersen-Mahrt, S.K. Activation-induced cytidine deaminase deaminates 5-Methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem. 279, 52353–52360 (2004).

    CAS  PubMed  Google Scholar 

  23. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rai, K. et al. DNA Demethylation in zebrafish Involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell 135, 1201–1212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhutani, N. et al. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J. 27, 1107–1113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rai, K. et al. DNA Demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell 142, 930–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fritz, E.L. & Papavasiliou, F.N. Cytidine deaminases: AIDing DNA demethylation? Genes Dev. 24, 2107–2114 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo, J.U., Su, Y., Zhong, C., Ming, G.-L. & Song, H. Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell 145, 423–434 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nabel, C.S. et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8, 751–758 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wijesinghe, P. & Bhagwat, A.S. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. 40, 9206–9217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyers, G. et al. Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl. Acad. Sci. USA 108, 11554–11559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuraoka, M. et al. Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc. Natl. Acad. Sci. USA 108, 11560–11565 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Rosenberg, B.R., Hamilton, C.E., Mwangi, M.M., Dewell, S. & Papavasiliou, F.N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol. 18, 230–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kobayashi, M. et al. Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Proc. Natl. Acad. Sci. USA 108, 19305–19310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Alon, S. et al. Systematic identification of edited microRNAs in the human brain. Genome Res. 22, 1533–1540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vesely, C., Tauber, S., Sedlazeck, F.J., Haeseler, von, A. & Jantsch, M.F. Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Res. 22, 1468–1476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bock, C. et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol. Cell 47, 633–647 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shaknovich, R. et al. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation. Blood 118, 3559–3569 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdouni, H. et al. Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucl. Acids Res. advance online publication, doi:10.1093/nar/gkt212 (12 April 2013).

  47. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS  PubMed  Google Scholar 

  49. Lefranc, M.-P. et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 37, D1006–D1012 (2009).

    CAS  PubMed  Google Scholar 

  50. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Hafner, M. et al. Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58, 164–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Krueger, F. & Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Team, R.D.C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).

  55. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

Download references

Acknowledgements

We thank members of the F.N.P. laboratory for discussion; C. Hamilton and D. Schulz for comments on the manuscript; C. Mason (Weill Cornell Medical College) for ERCC spikes; G. Hovel-Miner for VSG constructs; K. Velinzon for cell sorting; S. Dewell for sequencing advice; and Y. Li for assistance with EpiTYPER assays. Supported by the National Cancer Institute (CA098495), the Starr Cancer Consortium (I4-A447), the Howard Hughes Medical Institute (T.T.) and the US National Institutes of Health (work in the T.T. laboratory).

Author information

Authors and Affiliations

Authors

Contributions

E.L.F., B.R.R. and F.N.P. designed experiments and analyses; E.L.F. and K.L. cultured cells; K.L. generated VSG spikes; A.M. prepared miRNA sequencing libraries with the supervision of T.T.; E.L.F. did all other experiments and analyzed the data; and E.L.F., B.R.R. and F.N.P. wrote the manuscript.

Corresponding authors

Correspondence to Eric L Fritz or F Nina Papavasiliou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1567 kb)

Supplementary Table 1

Genes with greater than 2-fold difference between conditions, and full gene expression tables (XLSX 6595 kb)

Supplementary Table 2

Annotation of I-C and JH-C transcripts for quantification by Cufflinks (TXT 38 kb)

Supplementary Table 3

VH segment usage by AID expression, as determined by RNA-Seq (XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, E., Rosenberg, B., Lay, K. et al. A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells. Nat Immunol 14, 749–755 (2013). https://doi.org/10.1038/ni.2616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing