Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD8+ T cell contraction is controlled by early inflammation

Abstract

Pathogen-specific CD8+ T cells expand in number after infection and then their numbers invariably contract by 90–95%, leaving a stable memory cell pool. The chief features of this response are programmed early after infection; however, the factors regulating contraction are mostly undefined. Here we show that antibiotic treatment before Listeria monocytogenes infection induced numbers of protective memory CD8+ T cells similar to those in control infected mice, by a pathway without contraction. The absence of contraction correlated with decreased early inflammation and interferon-γ production and an increased fraction of CD8+ T cells expressing the interleukin 7 receptor at the peak of the response. Thus, contraction is controlled by early inflammation but is not essential for the generation of protective memory CD8+ T cells after infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional CD8+ T cell memory generation after reduction of bacterial infection by antibiotic treatment at 24 h after infection.
Figure 2: Amp pretreatment does not prevent the generation of CD8+ T cell memory in response to virulent or attenuated L. monocytogenes.
Figure 3: Memory CD8+ T cells generated in Amp-pretreated mice provide protection after secondary L. monocytogenes infection.
Figure 4: CD8+ T cell memory in Amp-pretreated mice without contraction.
Figure 5: Bacterial clearance, in vivo antigen and IFN-γ production after L. monocytogenes infection in control or Amp-pretreated mice.
Figure 6: Lack of contraction in Amp-pretreated mice correlates with increased IL-7R expression on antigen-specific CD8+ T cells and IFN-γ deficiency but not the magnitude of CD8+ T cell expansion.
Figure 7: CpG treatment at the time of L. monocytogenes infection induces contraction of CD8+ T cells in Amp-pretreated mice.
Figure 8: CpG treatment at the time of L. monocytogenes infection does not induce contraction of CD8+ T cells in IFN-γ-deficient mice.

Similar content being viewed by others

References

  1. Sprent, J. & Surh, C.D. T cell memory. Ann. Rev. Immunol. 20, 551–579 (2002).

    Article  CAS  Google Scholar 

  2. Kaech, S.M., Wherry, E.J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  Google Scholar 

  3. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Ann. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  Google Scholar 

  4. Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Ann. Rev. Immunol. 18, 275–308 (2000).

    Article  CAS  Google Scholar 

  5. Harty, J.T. & Badovinac, V.P. Influence of effector molecules on the CD8+ T cell response to infection. Curr. Opin. Immunol. 14, 360–365 (2002).

    Article  CAS  Google Scholar 

  6. Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    Article  CAS  Google Scholar 

  7. Prlic, M., Lefrancois, L. & Jameson, S.C. Regulation of memory CD8 T Cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med. 195, F49–F52 (2002).

    Article  CAS  Google Scholar 

  8. Schluns, K.S., Williams, K., Ma, A., Zheng, X.X. & Lefrancois, L. Cutting edge: Requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 168, 4827–4831 (2002).

    Article  CAS  Google Scholar 

  9. Becker, T.C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    Article  CAS  Google Scholar 

  10. Kieper, W.C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med. 195, 1533–1539 (2002).

    Article  CAS  Google Scholar 

  11. Goldrath, A.W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    Article  CAS  Google Scholar 

  12. Tan, J.T. et al. IL-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory-phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  Google Scholar 

  13. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  Google Scholar 

  14. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  15. Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000).

    Article  CAS  Google Scholar 

  16. Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  17. Wong, P. & Pamer, E.G. Cutting edge: antigen-independent CD8 T cell proliferation. J. Immunol. 166, 5864–5868 (2001).

    Article  CAS  Google Scholar 

  18. van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429 (2001).

    Article  CAS  Google Scholar 

  19. Foulds, K.E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002).

    Article  CAS  Google Scholar 

  20. Badovinac, V.P., Porter, B.B. & Harty, J.T. Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3, 619–626 (2002).

    Article  CAS  Google Scholar 

  21. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  22. Hildeman, D.A., Zhu, Y., Mitchell, T.C., Kappler, J. & Marrack, P. Molecular mechanisms of activated T cell death in vivo. Curr. Opin. Immunol. 14, 354–359 (2002).

    Article  CAS  Google Scholar 

  23. Plas, D.R., Rathmell, J.C. & Thompson, C.B. Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol. 3, 515–521 (2002).

    Article  CAS  Google Scholar 

  24. Badovinac, V.P., Hamilton, S.E. & Harty, J.T. Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity 18, 463–474 (2003).

    Article  CAS  Google Scholar 

  25. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  Google Scholar 

  26. Fuller, M.J. & Zajac, A.J. Ablation of CD8 and CD4 T cell responses by high viral loads. J. Immunol. 170, 477–486 (2003).

    Article  CAS  Google Scholar 

  27. Maraskovsky, E. et al. Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J. Immunol. 157, 5315–5323 (1996).

    CAS  PubMed  Google Scholar 

  28. Vella, A., Teague, T.K., Ihle, J., Kappler, J. & Marrack, P. Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J. Exp. Med. 186, 325–330 (1997).

    Article  CAS  Google Scholar 

  29. Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  Google Scholar 

  30. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  Google Scholar 

  31. Schluns, K.S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    Article  CAS  Google Scholar 

  32. Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  33. Jacob, J. & Baltimore, D. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  Google Scholar 

  34. Opferman, J.T., Ober, B.T. & Ashton-Rickardt, P.G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  Google Scholar 

  35. North, R.J., Berche, P.A. & Newborg, M.F. Immunologic consequences of antibiotic-induced abridgement of bacterial infection: effect on generation and loss of protective T cells and level of immunologic memory. J. Immunol. 127, 342–346 (1981).

    CAS  PubMed  Google Scholar 

  36. Hou, S., Hyland, L., Ryan, K.W., Portner, A. & Doherty, P.C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    Article  CAS  Google Scholar 

  37. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  38. Butz, E.A. & Bevan, M.J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  Google Scholar 

  39. Busch, D.H., Pilip, I.M., Vijh, S. & Pamer, E.G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    Article  CAS  Google Scholar 

  40. Homann, D., Teyton, L. & Oldstone, M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7, 913–919 (2001).

    Article  CAS  Google Scholar 

  41. Poston, R.M. & Kurlander, R.J. Analysis of the time course of IFN-γ mRNA and protein production during primary murine listeriosis. The immune phase of bacterial elimination is not temporally linked to IFN production in vivo. J. Immunol. 146, 4333–4337 (1991).

    CAS  PubMed  Google Scholar 

  42. Badovinac, V.P., Tvinnereim, A.R. & Harty, J.T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1357 (2000).

    Article  CAS  Google Scholar 

  43. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Ann. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  Google Scholar 

  44. Krieg, A.M. CpG motifs: the active ingredient in bacterial extracts? Nat. Med. 9, 831–835 (2003).

    Article  CAS  Google Scholar 

  45. Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  Google Scholar 

  46. Sprent, J. & Surh, C.D. T cell death and memory. Science 293, 245–248 (2001).

    Article  CAS  Google Scholar 

  47. Madakamutil, L.T. et al. CD8αα-mediated survival and differentiation of CD8 memory T cell precursors. Science 304, 590–593 (2004).

    Article  CAS  Google Scholar 

  48. Bachmann, M.F., Barner, M., Viola, A. & Kopf, M. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol. 29, 291–299 (1999).

    Article  CAS  Google Scholar 

  49. Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Ann. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  50. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  51. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  52. Harty, J.T. & Bevan, M.J. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity 3, 109–117 (1995).

    Article  CAS  Google Scholar 

  53. Brundage, R.A., Smith, G.A., Camilli, A., Theriot, J.A. & Portnoy, D.A. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Nat. Acad. Sci. USA 90, 11890–1184 (1993).

    Article  CAS  Google Scholar 

  54. Pamer, E.G., Harty, J.T. & Bevan, M.J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353, 852–855 (1991).

    Article  CAS  Google Scholar 

  55. van der Most, R.G. et al. Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection. J. Immunol. 157, 5543–5554 (1996).

    CAS  PubMed  Google Scholar 

  56. Badovinac, V.P. & Harty, J.T. Intracellular staining for TNF and IFN-γ detects different frequencies of antigen-specific CD8+ T cells. J. Immunol. Meth. 238, 107–117 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rensberger and R. Podyminogin for technical assistance; R. Ashman and P. Lenert (University of Iowa) for CpG oligonucleotides; and S. Perlman and S. Varga (University of Iowa) for critical review of the manuscript. Supported by National Institutes of Health (AI42767, AI46653 and AI50073 to J.T.H., and T32AI07485 to B.B.P.) and The Leukemia and Lymphoma Society (V.P.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T Harty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Ex vivo detection of Ag-specific CD8+ T cells after L. monocytogenes infection. (PDF 30 kb)

Supplementary Fig. 2

LCMV-specific CD8+ T cell response is not altered in Amp-pretreated mice. (PDF 32 kb)

Supplementary Fig. 3

Ag-specific CD8+ T cells in low and high dose infected control mice exhibit similar response kinetics and IL-7R expression. (PDF 34 kb)

Supplementary Fig. 4

Increased Bcl-2 expression on Ag-specific CD8+ T cells in Amp-pretreated mice after L. monocytogenes infection. (PDF 40 kb)

Supplementary Fig. 5

Bacterial clearance and lack of contraction in L. monocytogenes infected IFN-γ-deficient mice after Amp treatment. (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badovinac, V., Porter, B. & Harty, J. CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5, 809–817 (2004). https://doi.org/10.1038/ni1098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing