Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription

Abstract

Cd79a (called mb-1 here) encodes the Ig-α signaling component of the B cell receptor. The early B cell–specific mb-1 promoter was hypermethylated at CpG dinucleotides in hematopoietic stem cells but became progressively unmethylated as B cell development proceeded. The transcription factor Pax5 activated endogenous mb-1 transcription in a plasmacytoma cell line, but could not when the promoter was methylated. In this context, early B cell factor (EBF), a transcription factor required for B lymphopoiesis, potentiated activation of mb-1 by Pax5. EBF and the basic helix-loop-helix transcription factor E47 each contributed to epigenetic modifications of the mb-1 promoter, including CpG demethylation and nucleosomal remodeling. EBF function was enhanced by interaction with the transcription factor Runx1. These data suggest a molecular basis for the hierarchical dependence of Pax5 function on EBF and E2A in B lymphocyte development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequencing results of sodium bisulfite–modified genomic DNA from sorted ex vivo bone marrow populations.
Figure 2: Runx proteins bind to mb-1 promoter SPR2 sites.
Figure 3: EBF and Runx1 cooperatively activate endogenous mb-1 transcription.
Figure 4: Reduced CpG methylation in μM.2 cells transduced to express EBF and sequencing results of sodium bisulfite-modified genomic DNA derived from μM.2 cells.
Figure 5: EBF activates nucleosomal remodeling of the mb-1 promoter.
Figure 6: EBF is required for hypomethylation of the distal mb-1 promoter.
Figure 7: EBF and E47 each enhance accessibility of mb-1 promoters in Tcfe2a−/− pre-pro–B cells.

Similar content being viewed by others

References

  1. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449 (1996).

    Article  CAS  Google Scholar 

  2. Okuda, T., van Deursen, J., Hiebert, S., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  Google Scholar 

  3. Wang, Q. et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87, 697–708 (1996).

    Article  CAS  Google Scholar 

  4. Zhang, D.E. et al. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBFα2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol. Cell Biol. 16, 1231–1240 (1996).

    Article  CAS  Google Scholar 

  5. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    Article  CAS  Google Scholar 

  6. Libermann, T.A. et al. AML1 (CBFα2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. J. Biol. Chem. 274, 24671–24676 (1999).

    Article  CAS  Google Scholar 

  7. Ichikawa, M. et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299–304 (2004).

    Article  CAS  Google Scholar 

  8. Borghesi, L. et al. B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J. Exp. Med. 199, 491–502 (2004).

    Article  CAS  Google Scholar 

  9. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  10. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  11. Urbanek, P., Wang, Z.Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    Article  CAS  Google Scholar 

  12. Hagman, J., Belanger, C., Travis, A., Turck, C.W. & Grosschedl, R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev. 7, 760–773 (1993).

    Article  CAS  Google Scholar 

  13. Hagman, J., Travis, A. & Grosschedl, R. A novel lineage-specific nuclear factor regulates mb-1 gene transcription at the early stages of B cell differentiation. EMBO J. 10, 3409–3417 (1991).

    Article  CAS  Google Scholar 

  14. O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).

    Article  CAS  Google Scholar 

  15. Sigvardsson, M. Overlapping expression of early B-cell factor and basic helix-loop-helix proteins as a mechanism to dictate B-lineage-specific activity of the lambda5 promoter. Mol. Cell Biol. 20, 3640–3654 (2000).

    Article  CAS  Google Scholar 

  16. Goebel, P. et al. Localized gene-specific induction of accessibility to V(D)J recombination induced by E2A and early B cell factor in nonlymphoid cells. J. Exp. Med. 194, 645–656 (2001).

    Article  CAS  Google Scholar 

  17. Sigvardsson, M. et al. Early B-cell factor, E2A, and Pax-5 cooperate to activate the early B cell-specific mb-1 promoter. Mol. Cell Biol. 22, 8539–8551 (2002).

    Article  CAS  Google Scholar 

  18. Gisler, R. & Sigvardsson, M. The human VpreB promoter is a target for coordinated activation by early B cell factor and E47. J. Immunol. 168, 5130–5138 (2002).

    Article  CAS  Google Scholar 

  19. Sigvardsson, M., O'Riordan, M. & Grosschedl, R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7, 25–36 (1997).

    Article  CAS  Google Scholar 

  20. Fitzsimmons, D. et al. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 10, 2198–2211 (1996).

    Article  CAS  Google Scholar 

  21. Maier, H., Colbert, J., Fitzsimmons, D., Clark, D.R. & Hagman, J. Activation of the early B-cell-specific mb-1 (Ig-α) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol. Cell Biol. 23, 1946–1960 (2003).

    Article  CAS  Google Scholar 

  22. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  Google Scholar 

  23. Gonzalgo, M.L. & Jones, P.A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (MS-SNuPE). Nucleic Acids Res. 25, 2529–2531 (1997).

    Article  CAS  Google Scholar 

  24. Wotton, D., Ghysdael, J., Wang, S., Speck, N.A. & Owen, M.J. Cooperative binding of Ets-1 and core binding factor to DNA. Mol. Cell Biol. 14, 840–850 (1994).

    Article  CAS  Google Scholar 

  25. Schebesta, M., Heavey, B. & Busslinger, M. Transcriptional control of B-cell development. Curr. Opin. Immunol. 14, 216–223 (2002).

    Article  CAS  Google Scholar 

  26. Maier, H. et al. Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-α gene transcription by Pax-5 (BSAP). Nucleic Acids Res. 31, 5483–5489 (2003).

    Article  CAS  Google Scholar 

  27. Hombach, J., Leclercq, L., Radbruch, A., Rajewsky, K. & Reth, M. A novel 34-kd protein co-isolated with the IgM molecule in surface IgM-expressing cells. EMBO J. 7, 3451–3456 (1988).

    Article  CAS  Google Scholar 

  28. Hombach, J., Sablitzky, F., Rajewsky, K. & Reth, M. Transfected plasmacytoma cells do not transport the membrane form of IgM to the cell surface. J. Exp. Med. 167, 652–657 (1988).

    Article  CAS  Google Scholar 

  29. Ikawa, T., Kawamoto, H., Wright, L.Y.T. & Murre, C. Long-term cultured E2A-deficient hematopoietic progenitor cells are pluripotent. Immunity 20, 349–360 (2004).

    Article  CAS  Google Scholar 

  30. Seet, C.S., Brumbaugh, R.L. & Kee, B.L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J. Exp. Med. 199, 1689–1700 (2004).

    Article  CAS  Google Scholar 

  31. Travis, A., Hagman, J. & Grosschedl, R. Heterogeneously initiated transcription from the pre-B- and B-cell-specific mb-1 promoter: analysis of the requirement for upstream factor-binding sites and initiation site sequences. Mol. Cell Biol. 11, 5756–5766 (1991).

    Article  CAS  Google Scholar 

  32. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article  CAS  Google Scholar 

  33. Inoue, K. et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946–954 (2002).

    Article  CAS  Google Scholar 

  34. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002).

    Article  CAS  Google Scholar 

  35. Li, Q.L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    Article  CAS  Google Scholar 

  36. Meyers, S., Lenny, N., Sun, W. & Hiebert, S.W. AML-2 is a potential target for transcriptional regulation by the t(8;21) and t(12;21) fusion proteins in acute leukemia. Oncogene 13, 303–312 (1996).

    CAS  PubMed  Google Scholar 

  37. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    Article  CAS  Google Scholar 

  38. Lundgren, M. et al. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 103, 733–743 (2000).

    Article  CAS  Google Scholar 

  39. Medina, K.L. et al. Assembling a gene regulatory network for specification of the B cell fate. Dev. Cell (in the press).

  40. Julius, M.H., Janusz, M. & Lisowski, J. A colostral protein that induces the growth and differentiation of resting B lymphocytes. J. Immunol. 140, 1366–1371 (1988).

    CAS  PubMed  Google Scholar 

  41. Swift, S., Lorens, J., Achacoso, P. & Nolan, G.P. in Current Protocols in Immunology (Online) (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) Unit 10.17C (John Wiley & Sons, New York, 2003).

    Google Scholar 

  42. Quong, M.W., Harris, D.P., Swain, S.L. & Murre, C. E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. EMBO J. 18, 6307–6318 (1999).

    Article  CAS  Google Scholar 

  43. Hawley, R.G., Lieu, F.H., Fong, A.Z. & Hawley, T.S. Versatile retroviral vectors for potential use in gene therapy. Gene Therapy 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

  44. Naviaux, R.K., Constanzi, E., Haas, M. & Verma, I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner, D.H., Jr. et al. Thymocytes are rescued from glucocorticoid-mediated cell death by CD28/CTLA-4 costimulatory interactions with B7-1/B7-2. J. Exp. Med. 184, 1631–1638 (1996).

    Article  CAS  Google Scholar 

  46. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Kincade (Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma) for providing the SB199 hybridoma; M. Reth (Max-Planck Institute, Tubingen, Germany) for providing the 558LμM cell line; M. Busslinger (Institute for Molecular Pathology, Vienna, Austria) for providing the Pax5−/− mice; and S. McNeff for assistance with illustrations. Supported by National Institutes of Health (T32 AI07405 to H.M.; R01 AI26782 and R01 AI40946 to R.R.H.; and P01 AI22295, R01 AI054661 and R01 AI056322 to J.H.), the Irvington Institute for Immunological Research (K.L.M.) and the Milheim Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hagman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

EBF and Runx1/CBFβ synergistically activate the mb-1 promoter. (PDF 88 kb)

Supplementary Fig. 2

Real-time PCR analyses of Tcfe2a−/− pre-pro-B cells transduced with control, EBF or E47-expressing retroviruses. (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, H., Ostraat, R., Gao, H. et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol 5, 1069–1077 (2004). https://doi.org/10.1038/ni1119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing