Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island

Abstract

Epithelial cells can respond to conserved bacterial products that are internalized after either bacterial invasion or liposome treatment of cells. We report here that the noninvasive Gram-negative pathogen Helicobacter pylori was recognized by epithelial cells via Nod1, an intracellular pathogen-recognition molecule with specificity for Gram-negative peptidoglycan. Nod1 detection of H. pylori depended on the delivery of peptidoglycan to host cells by a bacterial type IV secretion system, encoded by the H. pylori cag pathogenicity island. Consistent with involvement of Nod1 in host defense, Nod1-deficient mice were more susceptible to infection by cag pathogenicity island–positive H. pylori than were wild-type mice. We propose that sensing of H. pylori by Nod1 represents a model for host recognition of noninvasive pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HEK293 cells express Nod1 mRNA.
Figure 2: Nod1 mediates epithelial cell responses to cagPAI-positive H. pylori bacteria.
Figure 3: H. pylori peptidoglycan induces proinflammatory responses in epithelial cells.
Figure 4: A functional cagPAI is required for H. pylori delivery of peptidoglyc an to epithelial cells.
Figure 5: Dual immunohistochemical and silver labeling of H. pylori cocultured AGS cells.
Figure 6: H. pylori–induced NF-κB activation in HEK293 cells does not depend on bacterial internalization.
Figure 7: Nod1-deficient mice have a heightened susceptibility to cagPAI-positive H. pylori bacteria.
Figure 8: Primary gastric epithelial cells from Nod1-deficient mice produce lower amounts of MIP-2 in response to stimulation by H. pylori bacteria.

Similar content being viewed by others

References

  1. Parsonnet, J. Helicobacter pylori: the size of the problem. Gut 43, S6–S9 (1998).

    Article  Google Scholar 

  2. Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type Ispecific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  Google Scholar 

  3. Blaser, M.J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115 (1995).

    CAS  PubMed  Google Scholar 

  4. Peek, R.M. Jr . et al. Heightened inflammatory response and cytokine expression in vivo to cagA+Helicobacter pylori strains. Lab. Invest. 73, 760–770 (1995).

    CAS  PubMed  Google Scholar 

  5. Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348 (2001).

    Article  CAS  Google Scholar 

  6. Covacci, A. & Rappuoli, R. Helicobacter pylori: molecular evolution of a bacterial quasispecies. Curr. Opin. Microbiol. 1, 96–102 (1998).

    Article  CAS  Google Scholar 

  7. Cascales, E. & Christie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1, 137–149 (2003).

    Article  CAS  Google Scholar 

  8. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    Article  CAS  Google Scholar 

  9. Selbach, M. et al. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J. 22, 515–528 (2003).

    Article  CAS  Google Scholar 

  10. Backhed, F. & Hornef, M. Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat? Microbes Infect. 5, 951–959 (2003).

    Article  CAS  Google Scholar 

  11. Bäckhed, F. et al. Gastric mucosal recognition of Helicobacter pylori is independent of Toll-like receptor 4. J. Infect. Dis. 187, 829–836 (2003).

    Article  Google Scholar 

  12. Maeda, S. et al. Distinct mechanism of Helicobacter pylori-mediated NF-κB activation between gastric cancer cells and monocytic cells. J. Biol. Chem. 276, 44856–44864 (2001).

    Article  CAS  Google Scholar 

  13. Smith, M.F., Jr. et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).

    Article  CAS  Google Scholar 

  14. Lee, S.K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356 (2003).

    Article  CAS  Google Scholar 

  15. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  16. Girardin, S.E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  Google Scholar 

  17. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  Google Scholar 

  18. Girardin, S.E. et al. CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736–742 (2001).

    Article  CAS  Google Scholar 

  19. Philpott, D.J. et al. Reduced activation of inflammatory responses in host cells by mouseadapted Helicobacter pylori isolates. Cell. Microbiol. 4, 285–296 (2002).

    Article  CAS  Google Scholar 

  20. Bertin, J. et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem. 274, 12955–12958 (1999).

    Article  CAS  Google Scholar 

  21. Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274, 14560–14567 (1999).

    Article  CAS  Google Scholar 

  22. Tomb, J.F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  Google Scholar 

  23. Odenbreit, S., Kavermann, H., Puls, J. & Haas, R. CagA tyrosine phosphorylation and interleukin-8 induction by Helicobacter pylori are independent from alpAB, HopZ and bab group outer membrane proteins. Int. J. Med. Microbiol. 292, 257–266 (2002).

    Article  CAS  Google Scholar 

  24. Petersen, A.M. & Krogfelt, K.A. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol. Med. Microbiol. 36, 117–126 (2003).

    Article  CAS  Google Scholar 

  25. Amieva, M.R., Salama, N.R., Tompkins, L.S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002).

    Article  CAS  Google Scholar 

  26. Israel, D.A. et al. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J. Clin. Invest. 107, 611–620 (2001).

    Article  CAS  Google Scholar 

  27. Fox, J.G. et al. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology 124, 1879–1890 (2003).

    Article  Google Scholar 

  28. Sakagami, T. et al. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut 39, 639–648 (1996).

    Article  CAS  Google Scholar 

  29. Remick, D.G. et al. CXC chemokine redundancy ensures local neutrophil recruitment during acute inflammation. Am. J. Pathol. 159, 1149–1157 (2001).

    Article  CAS  Google Scholar 

  30. Widmer, U., Manogue, K.R., Cerami, A. & Sherry, B. Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J. Immunol. 150, 4996–5012 (1993).

    CAS  PubMed  Google Scholar 

  31. Kim, J.G., Lee, S.J. & Kagnoff, M.F. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect. Immun. 72, 1487–1495 (2004).

    Article  CAS  Google Scholar 

  32. Gewirtz, A.T. et al. Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. J. Infect. Dis. 189, 1914–1920 (2004).

    Article  CAS  Google Scholar 

  33. Garhart, C.A., Heinzel, F.P., Czinn, S.J. & Nedrud, J.G. Vaccine-induced reduction of Helicobacter pylori colonization in mice is interleukin-12 dependent but gamma interferon and inducible nitric oxide synthase independent. Infect. Immun. 71, 910–921 (2003).

    Article  CAS  Google Scholar 

  34. Kim, D.S., Han, J.H. & Kwon, H.J. NF-kappaB and c-Jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol. 40, 633–643 (2003).

    Article  CAS  Google Scholar 

  35. Wang, D. & Baldwin, A.S., Jr. Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273, 29411–29416 (1998).

    Article  CAS  Google Scholar 

  36. Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-kappaB activity by exchange of dimers. Mol. Cell 11, 1563–1574 (2003).

    Article  CAS  Google Scholar 

  37. Aras, R.A. et al. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J. Exp. Med. 198, 1349–1360 (2003).

    Article  CAS  Google Scholar 

  38. Backert, S. et al. Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect. Immun. 72, 1043–1056 (2004).

    Article  CAS  Google Scholar 

  39. Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol. Microbiol. 49, 219–234 (2003).

    Article  CAS  Google Scholar 

  40. Ferrero, R.L., Thiberge, J.-M., Huerre, M. & Labigne, A. Immune responses of specific pathogen-free mice to chronic Helicobacter pylori (strain SS1) infection. Infect. Immun. 66, 1349–1355 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chevalier, C., Thiberge, J-M., Ferrero, R.L. & Labigne, A. Essential role of Helicobacter pylori γ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol. Microbiol. 31, 1359–1372 (1999).

    Article  CAS  Google Scholar 

  42. Skouloubris, S., Thiberge, J.M., Labigne, A. & De Reuse, H. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun. 66, 4517–4521 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heuermann, D. & Haas, R. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet. 257, 519–528 (1998).

    Article  CAS  Google Scholar 

  44. Moran, A.P., Helander, I.M. & Kosunen, T.U. Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J. Bacteriol. 174, 1370–1377 (1992).

    Article  CAS  Google Scholar 

  45. Glauner, B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 172, 451–464 (1988).

    Article  CAS  Google Scholar 

  46. Laniece, P. et al. A new high resolution radioimager for the quantitative analysis of radiolabelled molecules in tissue section. J. Neurosci. Methods 86, 1–5 (1998).

    Article  CAS  Google Scholar 

  47. Ferrero, R.L. et al. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc. Natl. Acad. Sci. USA 92, 6499–6503 (1995).

    Article  CAS  Google Scholar 

  48. Athman, R., Niewöhner, J., Louvard, D. & Robine, S. Epithelial cells: Establishment of primary cultures and immortalization. in Methods in Microbiology Vol. 31 (eds. Sansonetti, P.J. & Zychlinsky, A.) 96–113 (Academic Press, San Diego, 2002).

    Google Scholar 

  49. Akopyants, N.S. et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol. 28, 37–53 (1998).

    Article  CAS  Google Scholar 

  50. Salama, N. et al. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14668–14673 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Blanot for the LysA assays; S. Saurin and M. Tanguy for histological analyses; R. Peek for the H. pylori B128 strain; L. Bougneres for advice regarding tyrosine phosphorylation assays; members of Programme Transversal de Recherche (PTR) project 94 for sharing information and materials; and L. Ferrero for reading of the manuscript. J.B., D.J.P. and R.L.F. share senior authorship. Supported by the Institut Pasteur (PTR94; S.E.G., D.J.P. and R.L.F.); Health Research Board of Ireland (A.P.M.); Laboratoires Sanofi-Synthélabo, La Société des Eaux Minérales d'Evian and INSERM (J.V.); the French Ministry of Science (C.C.); the Fundação para a Ciência e a Tecnologia of Portugal (I.G.B.); and Danone Vitapole (S.E.G.). P.J.S. is a Howard Hughes International Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L Ferrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Absence of cagA and cagF. gene homologues in H. felis by Southern hybridization. (PDF 61 kb)

Supplementary Fig. 2

A mutation in the slt gene does not affect the H. pylori type IV secretion apparatus. (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viala, J., Chaput, C., Boneca, I. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5, 1166–1174 (2004). https://doi.org/10.1038/ni1131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing