Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules

Abstract

Lymphocyte homing is mediated by specific interactions between L-selectin on lymphocytes and sulfated carbohydrates restricted to high endothelial venules in lymph nodes. Here we generated mice deficient in both N-acetylglucosamine-6-O-sulfotransferase 1 (GlcNAc6ST-1) and GlcNAc6ST-2 and found that mutant mice had approximately 75% less homing of lymphocytes to the peripheral lymph nodes than did wild-type mice. Consequently, these mice had lower contact hypersensitivity responses than those of wild-type mice. Carbohydrate structural analysis showed that 6-sulfo sialyl Lewis X, a dominant ligand for L-selectin, was almost completely absent from the high endothelial venules of these mutant mice, whereas the amount of unsulfated sialyl Lewis X was much greater. These results demonstrate the essential function of GlcNAc6ST-1 and GlcNAc6ST-2 in L-selectin ligand biosynthesis in high endothelial venules and their importance in immune surveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L-selectin ligand oligosaccharides.
Figure 2: Expression of MECA-79 antigen, L-selectin ligands and the GlcNAc6ST-2–EGFP chimeric protein.
Figure 3: Lymphocyte trafficking to secondary lymphoid organs.
Figure 4: Reduced contact hypersensitivity in the double-knockout mice.
Figure 5: Structures of O-glycans attached to GlyCAM-1.
Figure 6: Expression of sulfotransferases in HEVs and characterization of remaining lymphocyte homing in double-knockout mice.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Arbonés, M.L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247–260 (1994).

    Article  PubMed  Google Scholar 

  2. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ley, K. & Kansas, G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Homeister, J.W. et al. The α(1,3) fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Rosen, S.D., Singer, M.S. & Yednock, T.A. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 228, 1005–1007 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Imai, Y., Lasky, L.A. & Rosen, S.D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 361, 555–557 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Hemmerich, S., Butcher, E.C. & Rosen, S.D. Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA-79, an adhesion-blocking monoclonal antibody. J. Exp. Med. 180, 2219–2226 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Mitsuoka, C. et al. Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J. Biol. Chem. 273, 11225–11233 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Hiraoka, N. et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewisx, an L-selectin ligand displayed by CD34. Immunity 11, 79–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Bistrup, A. et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J. Cell Biol. 145, 899–910 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yeh, J.-C. et al. Novel sulfated lymphocyte homing receptors and their control by a core1 extension β1,3-N-acetylglucosaminyltransferase. Cell 105, 957–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Streeter, P.R., Rouse, B.T.N. & Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Hiraoka, N. et al. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial venule-restricted sulfotransferase collaboratively control lymphocyte homing. J. Biol. Chem. 279, 3058–3067 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hemmerich, S. et al. Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Fukuda, M., Hiraoka, N., Akama, T.O. & Fukuda, M.N. Carbohydrate-modifying sulfotransferases: structure, function and pathophysiology. J. Biol. Chem. 276, 47747–47750 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hemmerich, S. et al. Chromosomal localization and genomic organization for the galactose/N-acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferase gene family. Glycobiology 11, 75–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Uchimura, K. et al. Molecular cloning and characterization of an N-acetylglucosamine-6-O-sulfotransferase. J. Biol. Chem. 273, 22577–22583 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kimura, N. et al. Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of α1–3 fucosyltransferase VII and newly cloned GlcNAcβ:6-sulfotransferase cDNA. Proc. Natl. Acad. Sci. USA 96, 4530–4535 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uchimura, K. et al. N-Acetylglucosamine 6-O-sulfotransferase-1 regulates expression of L-selectin ligands and lymphocyte homing. J. Biol. Chem. 279, 35001–35008 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    CAS  PubMed  Google Scholar 

  25. Phanuphak, P., Moorhead, J.W. & Claman, H.N. Tolerance and contact sensitivity to DNFB in mice. I. In vivo detection by ear swelling and correlation with in vitro cell stimulation. J. Immunol. 112, 115–123 (1974).

    CAS  PubMed  Google Scholar 

  26. Uchimura, K. et al. Diversity of N-acetylglucosamine-6-O-sulfotransferases: molecular cloning of a novel enzyme with different distribution and specificities. Biochem. Biophys. Res. Commun. 274, 291–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Bhakta, S. et al. Sulfation of N-acetylglucosamine by chondroitin 6-sulfotransferase 2 (GST-5). J. Biol. Chem. 275, 40226–40234 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, J.K., Bhakta, S., Rosen, S.D. & Hemmerich, S. Cloning and characterization of a mammalian N-acetylglucosamine-6-sulfotransferase that is highly restricted to intestinal tissue. Biochem. Biophys. Res. Commun. 263, 543–549 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Akama, T.O. et al. Human corneal GlcNAc 6-O-sulfotransferase and mouse intestinal GlcNAc 6-O-sulfotransferase both produce keratan sulfate. J. Biol. Chem. 276, 16271–16278 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Fukuta, M. et al. Molecular cloning and characterization of human keratan sulfate Gal-6-sulfotransferase. J. Biol. Chem. 272, 32321–32328 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. de Graffenried, C.L. & Bertozzi, C.R. Golgi localization of carbohydrate sulfotransferases is a determinant of L-selectin ligand biosynthesis. J. Biol. Chem. 278, 40282–40295 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Zerfaoui, M. et al. The cytosolic and transmembrane domains of the β1,6 N-acetylglucosaminyltransferase (C2GnT) function as a cis to medial/Golgi-targeting determinant. Glycobiology 12, 15–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Foxall, C. et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewisx oligosaccharide. J. Cell Biol. 117, 895–902 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Mitoma, J. et al. Extended core 1 and core 2 branched O-glycans differentially modulate sialyl Lewis x-type L-selectin ligand activity. J. Biol. Chem. 278, 9953–9961 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Fieger, C.B., Sassetti, C.M. & Rosen, S.D. Endoglycan, a member of the CD34 family, functions as an L-selectin ligand through modification with tyrosine sulfation and sialyl Lewis x. J. Biol. Chem. 278, 27390–27398 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Finger, E.B. et al. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379, 266–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Tangemann, K., Bistrup, A., Hemmerich, S. & Rosen, S.D. Sulfation of a high endothelial venule-expressed ligand for L-selectin: effects on tethering and rolling of lymphocytes. J. Exp. Med. 190, 935–941 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchimura, K. et al. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat. Immunol. advance online publication 9 October 2005(1038/ni1258).

  39. M'Rini, C. et al. A Novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α(1,3)-fucosyltransferase-IV. J. Exp. Med. 198, 1301–1312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hemmerich, S., Leffler, H. & Rosen, S.D. Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–12047 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Torii, T., Fukuta, M. & Habuchi, O. Sulfation of sialyl N-acetyllactosamine oligosaccharides and fetuin oligosaccharides by keratan sulfate Gal-6-sulfotransferase. Glycobiology 10, 203–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Catalina, M.D. et al. The route of antigen entry determines the requirement for L-selectin during immune responses. J. Exp. Med. 184, 2341–2351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smithson, G. et al. Fuc-TVII is required for T helper 1 and T cytotoxic 1 lymphocyte selectin ligand expression and recruitment in inflammation, and together with Fuc-TIV regulates naive T cell trafficking to lymph nodes. J. Exp. Med. 194, 601–614 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosen, S.D. Endothelial ligands for L-selectin. From lymphocyte recirculation to allograft rejection. Am. J. Pathol. 155, 1013–1020 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobayashi, M. et al. Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 101, 17807–17812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosen, S.D., Tsay, D., Singer, M.S., Hemmerich, S. & Abraham, W.M. Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am. J. Pathol. 166, 935–944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hanninen, A. et al. Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid cell binding to islet endothelium. J. Clin. Invest. 92, 2509–2515 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Faveeuw, C., Gagnerault, M-C. & Lepault, F. Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J. Immunol. 152, 5969–5978 (1994).

    CAS  PubMed  Google Scholar 

  49. Michie, S.A., Streeter, P.R., Butcher, E.C. & Rouse, R.V. L-selectin and α4β7 integrin homing receptor pathways mediate peripheral lymphocyte traffic to AKR mouse hyperplastic thymus. Am. J. Pathol. 147, 412–421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Michie, S.A., Streeter, P.R., Bolt, P.A., Butcher, E.C. & : Picker, L.J. The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. Am. J. Pathol. 143, 1688–1698 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fox, J.G. et al. Hypertrophic gastropathy in Helicobacter felis-infected wild-type C57BL/6 mice and p53 hemizygous transgenic mice. Gastroenterology 110, 155–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Singer, M.S. & Rosen, S.D. Purification and quantification of L-selectin-reactive GlyCAM-1 from mouse serum. J. Immunol. Methods 196, 153–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Girard, J.P. & Springer, T.A. Cloning from purified high endothelial venule cells of hevin, a close relative of the antiadhesive extracellular matrix protein SPARC. Immunity 2, 113–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Deutscher, S.L., Nuwayhid, N., Stanley, P., Briles, E.I. & Hirschberg, C.B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell 39, 295–299 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Akama, S. Chen and E. Lammar for critical reading of the manuscript, and A. Morse for organizing the manuscript. Supported by the National Institutes of Health (P01CA71932 to M.F. and J.B.L.; U54 GM62116 to the Functional Glycomics Consortium) and the Uehara Memorial Foundation, Japan (H.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Fukuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Preparation and analysis of O-glycans attached to GlyCAM-1. (PDF 1711 kb)

Supplementary Fig. 2

HPLC analysis of sulfated O-glycans attached to GlyCAM-1. (PDF 675 kb)

Supplementary Fig. 3

Structures of unsulfated (0S), monosulfated (1S), and disulfated (2S) O-glycans on a disaccharide core (Di), tetrasaccharide core (Tetra), or hexasaccharide core (Hexa) structure attached to GlyCAM-1 from wild-type (WT), GlcNAc6ST-1-deficient (GlcNAc6ST-1 KO), GlcNAc6ST-2-deficient (GlcNAc6ST-2 KO), and double-deficient (DKO) mice. (PDF 356 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawashima, H., Petryniak, B., Hiraoka, N. et al. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol 6, 1096–1104 (2005). https://doi.org/10.1038/ni1259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing