Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9

Abstract

Here we have identified 'triple D' (3d), a recessive N-ethyl-N-nitrosourea-induced mutation and phenotype in which no signaling occurs via the intracellular Toll-like receptors 3, 7 and 9 (sensors for double-stranded RNA, single-stranded RNA and unmethylated DNA, respectively). The 3d mutation also prevented cross-presentation and diminished major histocompatibility complex class II presentation of exogenous antigen; it also caused hypersusceptibility to infection by mouse cytomegalovirus and other microbes. By positional identification, we found 3d to be a missense allele of Unc93b1, which encodes the 12-membrane-spanning protein UNC-93B, a highly conserved molecule found in the endoplasmic reticulum with multiple paralogs in mammals. Innate responses to nucleic acids and exogenous antigen presentation, which both initiate in endosomes, thus seem to depend on an endoplasmic reticulum–resident protein, which suggests communication between these organellar systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR3, TLR7 and TLR9 signaling are prevented by the 3d mutation, which has no effect on endosomal pH.
Figure 2: Susceptibility to infection of mice homozygous for the 3d mutation.
Figure 3: The 3d/3d mice are defective in presentation of exogenous antigen.
Figure 4: Transfection-mediated 'rescue' of the 3d phenotype and the effect of Unc93b1 genotype on antigen presentation.
Figure 5: Subcellular localization of UNC-93B and the distribution of histocompatibility complexes and TLR9 in wild-type and Unc93b13d/3d macrophages.

Similar content being viewed by others

References

  1. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  2. Takeuchi, O. et al. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-Like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554–557 (2000).

    Article  CAS  Google Scholar 

  3. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  CAS  Google Scholar 

  4. Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S. & Underhill, D.M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  Google Scholar 

  5. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll- like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  6. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  7. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  8. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  Google Scholar 

  9. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  Google Scholar 

  10. Lund, J.M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  Google Scholar 

  11. Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    Article  CAS  Google Scholar 

  12. Funami, K. et al. The cytoplasmic 'linker region' in Toll-like receptor 3 controls receptor localization and signaling. Int. Immunol. 16, 1143–1154 (2004).

    Article  CAS  Google Scholar 

  13. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    Article  CAS  Google Scholar 

  14. Leifer, C.A. et al. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J. Immunol. 173, 1179–1183 (2004).

    Article  CAS  Google Scholar 

  15. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5, 190–198 (2004).

    Article  CAS  Google Scholar 

  16. Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

    Article  CAS  Google Scholar 

  17. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  Google Scholar 

  18. Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).

    Article  CAS  Google Scholar 

  19. Jenkins, M.K., Taylor, P.S., Norton, S.D. & Urdahl, K.B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 147, 2461–2466 (1991).

    CAS  PubMed  Google Scholar 

  20. Azuma, M., Cayabyab, M., Buck, D., Phillips, J.H. & Lanier, L.L. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J. Exp. Med. 175, 353–360 (1992).

    Article  CAS  Google Scholar 

  21. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    Article  CAS  Google Scholar 

  22. Borriello, F. et al. B7–1 and B7–2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6, 303–313 (1997).

    Article  CAS  Google Scholar 

  23. Pamer, E. & Cresswell, P. Mechanisms of MHC class I–restricted antigen processing. Annu. Rev. Immunol. 16, 323–358 (1998).

    Article  CAS  Google Scholar 

  24. Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994).

    Article  CAS  Google Scholar 

  25. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    Article  CAS  Google Scholar 

  26. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    Article  CAS  Google Scholar 

  27. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  Google Scholar 

  28. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 424, 743–748 (2003).

    Article  CAS  Google Scholar 

  29. Edelson, B.T. & Unanue, E.R. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J. Immunol. 169, 3869–3875 (2002).

    Article  CAS  Google Scholar 

  30. McCaffrey, R.L. et al. A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc. Natl. Acad. Sci. USA 101, 11386–11391 (2004).

    Article  CAS  Google Scholar 

  31. Serbina, N.V. et al. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19, 891–901 (2003).

    Article  CAS  Google Scholar 

  32. Martinson, J.J., Chapman, N.H., Rees, D.C., Liu, Y.T. & Clegg, J.B. Global distribution of the CCR5 gene 32-basepair deletion. Nat. Genet. 16, 100–103 (1997).

    Article  CAS  Google Scholar 

  33. Janssen, E.M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  Google Scholar 

  34. Sureau, A. et al. Characterization of multiple alternative RNAs resulting from antisense transcription of the PR264/SC35 splicing factor gene. Nucleic Acids Res. 25, 4513–4522 (1997).

    Article  CAS  Google Scholar 

  35. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function 3. Immunity 21, 107–119 (2004).

    Article  CAS  Google Scholar 

  36. Greenwald, I.S. & Horvitz, H.R. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics 96, 147–164 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Levin, J.Z. & Horvitz, H.R. The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction. J. Cell Biol. 117, 143–155 (1992).

    Article  CAS  Google Scholar 

  38. de la Cruz, I., Levin, J.Z., Cummins, C., Anderson, P. & Horvitz, H.R. sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J. Neurosci. 23, 9133–9145 (2003).

    Article  Google Scholar 

  39. Bayliss, D.A., Sirois, J.E. & Talley, E.M. The TASK family: two-pore domain background K+ channels. Mol. Interv. 3, 205–219 (2003).

    Article  CAS  Google Scholar 

  40. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  Google Scholar 

  41. MacFarlane, D.E. & Manzel, L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J. Immunol. 160, 1122–1131 (1998).

    CAS  PubMed  Google Scholar 

  42. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100, 6646–6651 (2003).

    Article  CAS  Google Scholar 

  43. Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240 (1998).

    Article  CAS  Google Scholar 

  44. Manzel, L., Strekowski, L., Ismail, F.M., Smith, J.C. & MacFarlane, D.E. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by 4-aminoquinolines and other weak bases: mechanistic studies. J. Pharmacol. Exp. Ther. 291, 1337–1347 (1999).

    CAS  PubMed  Google Scholar 

  45. de Bouteiller, O. et al. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J. Biol. Chem. 280, 38133–38145 (2005).

    Article  CAS  Google Scholar 

  46. Beutler, B. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57, 385–392 (2005).

    Article  CAS  Google Scholar 

  47. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  48. Leadbetter, E.A., Rifkin, I.R. & Marshak-Rothstein, A. Toll-like receptors and activation of autoreactive B cells. Curr. Dir. Autoimmun. 6, 105–122 (2003).

    Article  Google Scholar 

  49. Viglianti, G.A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 19, 837–847 (2003).

    Article  CAS  Google Scholar 

  50. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  Google Scholar 

  51. Hoebe, K., Du, X., Goode, J., Mann, N. & Beutler, B. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J. Endotoxin Res. 9, 250–255 (2003).

    Article  CAS  Google Scholar 

  52. Orange, J.S. & Biron, C.A. Characterization of early IL-12, IFN-α/β, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996).

    CAS  PubMed  Google Scholar 

  53. Jankowski, A., Scott, C.C. & Grinstein, S. Determinants of the phagosomal pH in neutrophils. J. Biol. Chem. 277, 6059–6066 (2002).

    Article  CAS  Google Scholar 

  54. Schapiro, F.B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032 (2000).

    Article  CAS  Google Scholar 

  55. Porgador, A., Yewdell, J.W., Deng, Y., Bennink, J.R. & Germain, R.N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.C. Scott (HSC), L. Yu (HSC) and A. Kiemer (University of California, San Diego) for help and advice. Supported by the National Institutes of Health, Canadian Institutes of Health Research, Uehara Memorial Foundation (K.T.) and Leukemia and Lymphoma Society (3248-05 to E.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Beutler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

3d/3d mice are unable to contain Gram-positive S. aureus infection. (PDF 190 kb)

Supplementary Fig. 2

Coarse microsatellite mapping of the 3d locus. (PDF 25 kb)

Supplementary Fig. 3

Fine genetic mapping of 3d region. (PDF 24 kb)

Supplementary Fig. 4

SNPs and a novel microsatellite marker used to confine the 3d critical region. (PDF 28 kb)

Supplementary Fig. 5

Illustration of 3d critical region. (PDF 30 kb)

Supplementary Fig. 6

Consed display (http://www.phrap.org) of the mutation in Unc93b1. (PDF 134 kb)

Supplementary Fig. 7

Alignment of the orthologous sequences from vertebrate and invertebrate species in the region of the mutation (boxed). (PDF 124 kb)

Supplementary Fig. 8

Optimal alignment (Clustal-W) between UNC-93A and UNC-93B proteins. (PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabeta, K., Hoebe, K., Janssen, E. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7, 156–164 (2006). https://doi.org/10.1038/ni1297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing