Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C/EBPβ is required for 'emergency' granulopoiesis

Abstract

During 'emergency' situations such as infections, host defense requires rapid mobilization of bone marrow granulocyte progenitors. 'Steady-state' granulopoiesis is absolutely dependent on the C/EBPα transcription factor, but the transcriptional mechanisms underlying emergency granulopoiesis remain unclear. Here we show that large numbers of granulocytes were generated from C/EBPα-deficient progenitors after cytokine stimulation in vivo. Cytokine treatment or fungal infection induced upregulation of C/EBPβ but not C/EBPα or C/EBPε transcripts in granulocyte progenitors, and C/EBPβ-deficient progenitors showed decreased emergency-induced granulopoiesis in vitro and in vivo. C/EBPβ inhibited proliferation less severely than did C/EBPα. These data suggest a critical function for C/EBPβ in emergency granulopoiesis, which demands both differentiation and proliferation of granulocyte precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Granulopoiesis induced by hydrodynamics-mediated gene transfer of cytokine expression vectors.
Figure 2: Cytokine influence on myeloid progenitors.
Figure 3: 'Rescue' of granulopoiesis in Cebpa−/− mice.
Figure 4: C/EBPβ in cytokine-induced proliferation and differentiation of granulocytes.
Figure 5: C/EBPβ in granulopoiesis induced by fungal infection.
Figure 6: C/EBPα-independent granulopoiesis is mediated by C/EBPβ.
Figure 7: Analyses of K562 cell lines stably expressing the fusion protein C/EBPαER or C/EBPβER or the estrogen receptor hormone-binding domain alone (ER).

Similar content being viewed by others

References

  1. Metcalf, D. Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science 254, 529–533 (1991).

    Article  CAS  Google Scholar 

  2. Tenen, D.G., Hromas, R., Licht, J.D. & Zhang, D.E. Transcription factors, normal myeloid development, and leukemia. Blood 90, 489–519 (1997).

    CAS  PubMed  Google Scholar 

  3. Zhu, J. & Emerson, S.G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295–3313 (2002).

    Article  CAS  Google Scholar 

  4. Cheers, C. et al. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect. Immun. 56, 247–251 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Watari, K. et al. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117–122 (1989).

    CAS  PubMed  Google Scholar 

  6. Metcalf, D. & Nicola, N.A. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J. Cell. Physiol. 116, 198–206 (1983).

    Article  CAS  Google Scholar 

  7. Liu, F., Wu, H.Y., Wesselschmidt, R., Kornaga, T. & Link, D.C. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5, 491–501 (1996).

    Article  CAS  Google Scholar 

  8. Lieschke, G.J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    CAS  Google Scholar 

  9. Metcalf, D. et al. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68, 46–57 (1986).

    CAS  PubMed  Google Scholar 

  10. Metcalf, D. et al. Hemopoietic responses in mice injected with purified recombinant murine GM-CSF. Exp. Hematol. 15, 1–9 (1987).

    CAS  PubMed  Google Scholar 

  11. Nishinakamura, R. et al. Mice deficient for the IL-3/GM-CSF/IL-5 β c receptor exhibit lung pathology and impaired immune response, while β IL3 receptor-deficient mice are normal. Immunity 2, 211–222 (1995).

    Article  CAS  Google Scholar 

  12. Landschulz, W.H., Johnson, P.F. & McKnight, S.L. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243, 1681–1688 (1989).

    Article  CAS  Google Scholar 

  13. Smith, L.T., Hohaus, S., Gonzalez, D.A., Dziennis, S.E. & Tenen, D.G.P.U. 1 (Spi-1) and C/EBPα regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88, 1234–1247 (1996).

    CAS  PubMed  Google Scholar 

  14. Ford, A.M. et al. Regulation of the myeloperoxidase enhancer binding proteins Pu1, C-EBPα, -β and -δ during granulocyte-lineage specification. Proc. Natl. Acad. Sci. USA 93, 10838–10843 (1996).

    Article  CAS  Google Scholar 

  15. Oelgeschlager, M., Nuchprayoon, I., Luscher, B. & Friedman, A.D. C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter. Mol. Cell. Biol. 16, 4717–4725 (1996).

    Article  CAS  Google Scholar 

  16. Radomska, H.S. et al. CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol. Cell. Biol. 18, 4301–4314 (1998).

    Article  CAS  Google Scholar 

  17. Zhang, D.E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl. Acad. Sci. USA 94, 569–574 (1997).

    Article  CAS  Google Scholar 

  18. Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).

    Article  CAS  Google Scholar 

  19. Yamanaka, R. et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein ε-deficient mice. Proc. Natl. Acad. Sci. USA 94, 13187–13192 (1997).

    Article  CAS  Google Scholar 

  20. Natsuka, S. et al. Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood 79, 460–466 (1992).

    CAS  PubMed  Google Scholar 

  21. Scott, L.M., Civin, C.I., Rorth, P. & Friedman, A.D. A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80, 1725–1735 (1992).

    CAS  PubMed  Google Scholar 

  22. Screpanti, I. et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBPβ-deficient mice. EMBO J. 14, 1932–1941 (1995).

    Article  CAS  Google Scholar 

  23. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361 (1995).

    Article  CAS  Google Scholar 

  24. Sterneck, E., Tessarollo, L. & Johnson, P.F. An essential role for C/EBPβ in female reproduction. Genes Dev. 11, 2153–2162 (1997).

    Article  CAS  Google Scholar 

  25. Sterneck, E. et al. Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein δ. Proc. Natl. Acad. Sci. USA 95, 10908–10913 (1998).

    Article  CAS  Google Scholar 

  26. Zhang, P. et al. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein α (C/EBPα) is critical for granulopoiesis. J. Exp. Med. 188, 1173–1184 (1998).

    Article  CAS  Google Scholar 

  27. Collins, S.J., Ulmer, J., Purton, L.E. & Darlington, G. Multipotent hematopoietic cell lines derived from C/EBPα−/− knockout mice display granulocyte macrophage-colony-stimulating factor, granulocyte-colony-stimulating factor, and retinoic acid-induced granulocytic differentiation. Blood 98, 2382–2388 (2001).

    Article  CAS  Google Scholar 

  28. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  Google Scholar 

  29. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  30. Jiang, J., Yamato, E. & Miyazaki, J. Intravenous delivery of naked plasmid DNA for in vivo cytokine expression. Biochem. Biophys. Res. Commun. 289, 1088–1092 (2001).

    Article  CAS  Google Scholar 

  31. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  32. Wang, N.D. et al. Impaired energy homeostasis in C/EBPα knockout mice. Science 269, 1108–1112 (1995).

    Article  CAS  Google Scholar 

  33. Zhang, P. et al. Induction of granulocytic differentiation by 2 pathways. Blood 99, 4406–4412 (2002).

    Article  CAS  Google Scholar 

  34. Basu, S. et al. “Emergency” granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95, 3725–3733 (2000).

    CAS  PubMed  Google Scholar 

  35. Begay, V., Smink, J. & Leutz, A. Essential requirement of CCAAT/enhancer binding proteins in embryogenesis. Mol. Cell. Biol. 24, 9744–9751 (2004).

    Article  CAS  Google Scholar 

  36. Sutherland, J.A., Turner, A.R., Mannoni, P., McGann, L.E. & Turc, J.M. Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages. J. Biol. Response Mod. 5, 250–262 (1986).

    CAS  PubMed  Google Scholar 

  37. Duprez, E., Wagner, K., Koch, H. & Tenen, D.G. C/EBPβ: a major PML-RARA-responsive gene in retinoic acid-induced differentiation of APL cells. EMBO J. 22, 5806–5816 (2003).

    Article  CAS  Google Scholar 

  38. Ross, S.E. et al. Phosphorylation of C/EBPα inhibits granulopoiesis. Mol. Cell. Biol. 24, 675–686 (2004).

    Article  CAS  Google Scholar 

  39. Wang, Q.F., Cleaves, R., Kummalue, T., Nerlov, C. & Friedman, A.D. Cell cycle inhibition mediated by the outer surface of the C/EBPα basic region is required but not sufficient for granulopoiesis. Oncogene 22, 2548–2557 (2003).

    Article  CAS  Google Scholar 

  40. Johansen, L.M. et al. c-Myc is a critical target for c/EBPα in granulopoiesis. Mol. Cell. Biol. 21, 3789–3806 (2001).

    Article  CAS  Google Scholar 

  41. Descombes, P., Chojkier, M., Lichtsteiner, S., Falvey, E. & Schibler, U. LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dev. 4, 1541–1551 (1990).

    Article  CAS  Google Scholar 

  42. Poli, V., Mancini, F.P. & Cortese, R. IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63, 643–653 (1990).

    Article  CAS  Google Scholar 

  43. Akira, S. et al. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 9, 1897–1906 (1990).

    Article  CAS  Google Scholar 

  44. Wang, Q.F. & Friedman, A.D. CCAAT/enhancer-binding proteins are required for granulopoiesis independent of their induction of the granulocyte colony-stimulating factor receptor. Blood 99, 2776–2785 (2002).

    Article  CAS  Google Scholar 

  45. Popernack, P.M., Truong, L.T., Kamphuis, M. & Henderson, A.J. Ectopic expression of CCAAT/enhancer binding protein beta (C/EBPβ) in long-term bone marrow cultures induces granulopoiesis and alters stromal cell function. J. Hematother. Stem Cell Res. 10, 631–642 (2001).

    Article  CAS  Google Scholar 

  46. Jones, L.C. et al. Expression of C/EBPβ from the C/ebpα gene locus is sufficient for normal hematopoiesis in vivo. Blood 99, 2032–2036 (2002).

    Article  CAS  Google Scholar 

  47. Trautwein, C. et al. Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain. Nature 364, 544–547 (1993).

    Article  CAS  Google Scholar 

  48. Buck, M., Poli, V., van der Geer, P., Chojkier, M. & Hunter, T. Phosphorylation of rat serine 105 or mouse threonine 217 in C/EBPβ is required for hepatocyte proliferation induced by TGFα. Mol. Cell 4, 1087–1092 (1999).

    Article  CAS  Google Scholar 

  49. Hsu, C.L. et al. Antagonistic effect of CCAAT enhancer-binding protein-α and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors. Proc. Natl. Acad. Sci. USA 103, 672–677 (2006).

    Article  CAS  Google Scholar 

  50. McKnight, S.L. McBindalla–better name for CCAAT/enhancer binding proteins? Cell 107, 259–261 (2001).

    Article  CAS  Google Scholar 

  51. Wang, H. et al. C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell 8, 817–828 (2001).

    Article  CAS  Google Scholar 

  52. Porse, B.T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107, 247–258 (2001).

    Article  CAS  Google Scholar 

  53. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  Google Scholar 

  54. Greenbaum, L.E. et al. CCAAT enhancer-binding protein β is required for normal hepatocyte proliferation in mice after partial hepatectomy. J. Clin. Invest. 102, 996–1007 (1998).

    Article  CAS  Google Scholar 

  55. Nerlov, C. C/EBPα mutations in acute myeloid leukaemias. Nat. Rev. Cancer 4, 394–400 (2004).

    Article  CAS  Google Scholar 

  56. Pabst, T. et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nat. Med. 7, 444–451 (2001).

    Article  CAS  Google Scholar 

  57. Perrotti, D. et al. BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2. Nat. Genet. 30, 48–58 (2002).

    Article  CAS  Google Scholar 

  58. Guibal, F., Radomska, H.S., Johansen, L.M. & Tenen, D.G. C/EBP is deregulated by PML-RAR in acute promyelocytic leukemia. Blood 106, 844 (2005).

    Google Scholar 

  59. Radomska, H.S. et al. Block of C/EBPα function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J. Exp. Med. 203, 371–381 (2006).

    Article  CAS  Google Scholar 

  60. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Elf, M.E. Guiney and K. Martens for assistance in animal husbandry; J. Yang and R. Hanson for assistance in procuring Cebpb−/− mice; L. Prickett for cell sorting; and G. Huang, S. Kobayashi, A. Kawasaki, D.A. Gonzalez, H. Iwasaki and all other members of the laboratories of D.G.T. and K.A. for discussions and suggestions. Supported by the National Institutes of Health (HL56745 to D.G.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G Tenen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Serum cytokine concentrations after hydrodynamics-mediated gene transfer (PDF 88 kb)

Supplementary Fig. 2

Functional analysis of BM progenitors with or without cytokine treatment in vivo. (PDF 42 kb)

Supplementary Fig. 3

Rescue of granulopoiesis in Cebpaf/f conditional knockout mice by cytokine treatments. (PDF 97 kb)

Supplementary Fig. 4

Cebpb−/− progenitors demonstrate reduced proliferative potential in vitro (PDF 653 kb)

Supplementary Fig. 5

K562 cell lines stably expressing ER proteins fused to C/EBPα or C/EBPβ. (PDF 869 kb)

Supplementary Fig. 6

Effects of C/EBPα and C/EBPβ on cell cycle status of BAF and 32D cell lines (PDF 459 kb)

Supplementary Table 1

Differential counts of methylcellulose colony assay. (PDF 49 kb)

Supplementary Table 2

Primers and probes for quantitative PCR. (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Zhang, P., Dayaram, T. et al. C/EBPβ is required for 'emergency' granulopoiesis. Nat Immunol 7, 732–739 (2006). https://doi.org/10.1038/ni1354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing