Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction

Abstract

Receptors encoded by the natural killer (NK) cell gene complex (such as NKG2D) govern the reactivity of NK cells. However, the function and ligand(s) of the NK cell gene complex–encoded human NK cell receptor NKp80 remain elusive. Here we demonstrate that NKp80 binds to the genetically linked 'orphan' receptor AICL, which, like NKp80, is absent from rodents. We defined AICL as a myeloid-specific activating receptor that is upregulated by Toll-like receptor stimulation. AICL-NKp80 interactions promoted NK cell–mediated cytolysis of malignant myeloid cells. In addition, during crosstalk between NK cells and monocytes, NKp80 stimulated the release of proinflammatory cytokines from both cell types. Thus, by specifically bridging NK cells and myeloid cells, NKp80-AICL interactions may contribute to the initiation and maintenance of immune responses at sites of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NKp80 stimulates granule exocytosis and cytokine secretion.
Figure 2: NKp80 engages AICL.
Figure 3: AICL is a myeloid-specific receptor.
Figure 4: AICL is upregulated by TLR stimulation and stimulates TNF release.
Figure 5: The NKp80-AICL interaction promotes NK cell–mediated cytolysis of myeloid cells.
Figure 6: NKp80-dependent stimulation of cytokine release.

Similar content being viewed by others

References

  1. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    Article  CAS  Google Scholar 

  2. Karre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    Article  CAS  Google Scholar 

  3. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  Google Scholar 

  4. Raulet, D.H. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat. Immunol. 5, 996–1002 (2004).

    Article  CAS  Google Scholar 

  5. Degli-Esposti, M.A. & Smyth, M.J. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat. Rev. Immunol. 5, 112–124 (2005).

    Article  CAS  Google Scholar 

  6. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    Article  CAS  Google Scholar 

  7. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  Google Scholar 

  8. Fernandez, N.C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405–411 (1999).

    Article  CAS  Google Scholar 

  9. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  Google Scholar 

  10. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  Google Scholar 

  11. Baratin, M. et al. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 102, 14747–14752 (2005).

    Article  CAS  Google Scholar 

  12. Dalbeth, N. et al. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J. Immunol. 173, 6418–6426 (2004).

    Article  CAS  Google Scholar 

  13. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  Google Scholar 

  14. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  15. Roda-Navarro, P. et al. Human KLRF1, a novel member of the killer cell lectin-like receptor gene family: molecular characterization, genomic structure, physical mapping to the NK gene complex and expression analysis. Eur. J. Immunol. 30, 568–576 (2000).

    Article  CAS  Google Scholar 

  16. Vitale, M. et al. Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur. J. Immunol. 31, 233–242 (2001).

    Article  CAS  Google Scholar 

  17. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  Google Scholar 

  18. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  Google Scholar 

  19. Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  Google Scholar 

  20. Vivier, E., Tomasello, E. & Paul, P. Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr. Opin. Immunol. 14, 306–311 (2002).

    Article  CAS  Google Scholar 

  21. Oppenheim, D.E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat. Immunol. 6, 928–937 (2005).

    Article  CAS  Google Scholar 

  22. Smyth, M.J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    Article  CAS  Google Scholar 

  23. Biassoni, R. et al. Molecular and functional characterization of NKG2D, NKp80, and NKG2C triggering NK cell receptors in rhesus and cynomolgus macaques: monitoring of NK cell function during simian HIV infection. J. Immunol. 174, 5695–5705 (2005).

    Article  CAS  Google Scholar 

  24. Mavilio, D. et al. Identification of NKG2A and NKp80 as specific natural killer cell markers in rhesus and pigtailed monkeys. Blood 106, 1718–1725 (2005).

    Article  CAS  Google Scholar 

  25. Cooper, M.A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001).

    Article  CAS  Google Scholar 

  26. Carlyle, J.R. et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA 101, 3527–3532 (2004).

    Article  CAS  Google Scholar 

  27. Iizuka, K., Naidenko, O.V., Plougastel, B.F., Fremont, D.H. & Yokoyama, W.M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 4, 801–807 (2003).

    Article  CAS  Google Scholar 

  28. Aldemir, H. et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol. 175, 7791–7795 (2005).

    Article  CAS  Google Scholar 

  29. Rosen, D.B. et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol. 175, 7796–7799 (2005).

    Article  CAS  Google Scholar 

  30. Hamann, J., Montgomery, K.T., Lau, S., Kucherlapati, R. & van Lier, R.A. AICL: a new activation-induced antigen encoded by the human NK gene complex. Immunogenetics 45, 295–300 (1997).

    Article  CAS  Google Scholar 

  31. Belge, K.U. et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J. Immunol. 168, 3536–3542 (2002).

    Article  CAS  Google Scholar 

  32. Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

    Article  CAS  Google Scholar 

  33. Pende, D. et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107, 2030–2036 (2006).

    Article  CAS  Google Scholar 

  34. LeNaour, F. et al. Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J. Biol. Chem. 276, 17920–17931 (2001).

    Article  CAS  Google Scholar 

  35. Shiow, L.R. et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    Article  CAS  Google Scholar 

  36. Vankayalapati, R. et al. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol. 175, 4611–4617 (2005).

    Article  CAS  Google Scholar 

  37. Li, P. et al. Complex structure of the activating immunoreceptor NKG2D and its MHC class I–like ligand MICA. Nat. Immunol. 2, 443–451 (2001).

    Article  CAS  Google Scholar 

  38. Korbel, D.S., Newman, K.C., Almeida, C.R., Davis, D.M. & Riley, E.M. Heterogeneous human NK cell responses to Plasmodium falciparum-infected erythrocytes. J. Immunol. 175, 7466–7473 (2005).

    Article  CAS  Google Scholar 

  39. Zhang, R., Zheng, X., Li, B., Wei, H. & Tian, Z. Human NK cells positively regulate γδ T cells in response to Mycobacterium tuberculosis. J. Immunol. 176, 2610–2616 (2006).

    Article  CAS  Google Scholar 

  40. Radsak, M.P. et al. The heat shock protein Gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood 101, 2810–2815 (2003).

    Article  CAS  Google Scholar 

  41. Welte, S.A. et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur. J. Immunol. 33, 194–203 (2003).

    Article  CAS  Google Scholar 

  42. Aida, Y. & Pabst, M.J. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J. Immunol. Methods 132, 191–195 (1990).

    Article  CAS  Google Scholar 

  43. Alter, G., Malenfant, J.M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

    Article  CAS  Google Scholar 

  44. Waldhauer, I. & Steinle, A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res. 66, 2520–2526 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Ruschmeier for technical assistance, J. Bukur for CD161-ED, J. Pfeiffer for real-time PCR, A. Kelp for enhanced green fluorescent protein constructs, S. Stevanovic for mass spectrometry, and H.-G. Rammensee for long-term support and critical remarks; R848 was from S. Bauer (Philipps University Marburg). Supported by Deutsche Forschungsgemeinschaft (STE 828/3-1 and SFB 685 TP A1).

Author information

Authors and Affiliations

Authors

Contributions

S.W. generated monoclonal antibodies, produced recombinant NKp80, AICL and LLT1, designed and did most of the experiments and participated in writing the manuscript; S.K. analyzed the degranulation and cytokine secretion of NK cells stimulated by plate-bound antibodies; I.W. did immunoblots; and A.S. did surface plasmon resonance measurements, conceptualized the work and wrote the manuscript.

Corresponding author

Correspondence to Alexander Steinle.

Ethics declarations

Competing interests

S.W. and A.S. have applied for a patent (submitted 6 September 2006 by the University of Tübingen) based on the results in this manuscript.

Supplementary information

Supplementary Fig. 1

Recombinant soluble ectodomains (ED) of various C-type lectin-like receptors. (PDF 129 kb)

Supplementary Fig. 2

Specificity of NKp80-specific antibodies 5D12, 10E4, and 12D11. (PDF 71 kb)

Supplementary Fig. 3

Abundance of AICL and NKp80 transcripts in leukocyte subpopulations. (PDF 30 kb)

Supplementary Fig. 4

AICL-specific antibodies. (PDF 96 kb)

Supplementary Fig. 5

Frequencies of IFN-γ-producing NK cells after 12 h co-culture with autologous CD14dimCD16+ monocytes in the presence of LPS. (PDF 84 kb)

Supplementary Table 1

AICL surface expression on human primary cells and tumor cell lines. (PDF 31 kb)

Supplementary Methods (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welte, S., Kuttruff, S., Waldhauer, I. et al. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol 7, 1334–1342 (2006). https://doi.org/10.1038/ni1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing